llm: update all ARC int4 examples (#8809)
* update GPU examples * update other examples * fix * update based on comment
This commit is contained in:
		
							parent
							
								
									b8b1b6888b
								
							
						
					
					
						commit
						0186f3ab2f
					
				
					 10 changed files with 166 additions and 24 deletions
				
			
		| 
						 | 
					@ -15,12 +15,12 @@
 | 
				
			||||||
#
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
 | 
					import intel_extension_for_pytorch as ipex
 | 
				
			||||||
import time
 | 
					import time
 | 
				
			||||||
import argparse
 | 
					import argparse
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from bigdl.llm.transformers import AutoModelForCausalLM
 | 
					from bigdl.llm.transformers import AutoModelForCausalLM
 | 
				
			||||||
from transformers import AutoTokenizer
 | 
					from transformers import AutoTokenizer
 | 
				
			||||||
import intel_extension_for_pytorch as ipex
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
# you could tune the prompt based on your own model,
 | 
					# you could tune the prompt based on your own model,
 | 
				
			||||||
BAICHUAN_PROMPT_FORMAT = "<human>{prompt} <bot>"
 | 
					BAICHUAN_PROMPT_FORMAT = "<human>{prompt} <bot>"
 | 
				
			||||||
| 
						 | 
					@ -44,7 +44,7 @@ if __name__ == '__main__':
 | 
				
			||||||
                                                 load_in_4bit=True,
 | 
					                                                 load_in_4bit=True,
 | 
				
			||||||
                                                 optimize_model=False,
 | 
					                                                 optimize_model=False,
 | 
				
			||||||
                                                 trust_remote_code=True)
 | 
					                                                 trust_remote_code=True)
 | 
				
			||||||
    model = model.half().to('xpu')
 | 
					    model = model.to('xpu')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Load tokenizer
 | 
					    # Load tokenizer
 | 
				
			||||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
				
			||||||
| 
						 | 
					@ -54,16 +54,17 @@ if __name__ == '__main__':
 | 
				
			||||||
    with torch.inference_mode():
 | 
					    with torch.inference_mode():
 | 
				
			||||||
        prompt = BAICHUAN_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
					        prompt = BAICHUAN_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
				
			||||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
					        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
				
			||||||
 | 
					        # ipex model needs a warmup, then inference time can be accurate
 | 
				
			||||||
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
 | 
					                                max_new_tokens=args.n_predict)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # start inference
 | 
				
			||||||
        st = time.time()
 | 
					        st = time.time()
 | 
				
			||||||
        # if your selected model is capable of utilizing previous key/value attentions
 | 
					        # if your selected model is capable of utilizing previous key/value attentions
 | 
				
			||||||
        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
					        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
				
			||||||
        # it is important to set `use_cache=True` explicitly in the `generate` function
 | 
					        # it is important to set `use_cache=True` explicitly in the `generate` function
 | 
				
			||||||
        # to obtain optimal performance with BigDL-LLM INT4 optimizations
 | 
					        # to obtain optimal performance with BigDL-LLM INT4 optimizations
 | 
				
			||||||
        # if your selected model has `"do_sample": true` in its generation config,
 | 
					 | 
				
			||||||
        # it is important to set `do_sample=False` explicitly in the `generate` function
 | 
					 | 
				
			||||||
        # to obtain optimal performance with BigDL-LLM INT4 optimizations
 | 
					 | 
				
			||||||
        output = model.generate(input_ids,
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
                                do_sample=False,
 | 
					 | 
				
			||||||
                                max_new_tokens=args.n_predict)
 | 
					                                max_new_tokens=args.n_predict)
 | 
				
			||||||
        torch.xpu.synchronize()
 | 
					        torch.xpu.synchronize()
 | 
				
			||||||
        end = time.time()
 | 
					        end = time.time()
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -65,3 +65,44 @@ Inference time: xxxx s
 | 
				
			||||||
 | 
					
 | 
				
			||||||
答: Artificial Intelligence (AI) refers to the ability of a computer or machine to perform tasks that typically require human-like intelligence, such as understanding language, recognizing patterns
 | 
					答: Artificial Intelligence (AI) refers to the ability of a computer or machine to perform tasks that typically require human-like intelligence, such as understanding language, recognizing patterns
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Example 2: Stream Chat using `stream_chat()` API
 | 
				
			||||||
 | 
					In the example [streamchat.py](./streamchat.py), we show a basic use case for a ChatGLM2 model to stream chat, with BigDL-LLM INT4 optimizations.
 | 
				
			||||||
 | 
					### 1. Install
 | 
				
			||||||
 | 
					We suggest using conda to manage environment:
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					conda create -n llm python=3.9
 | 
				
			||||||
 | 
					conda activate llm
 | 
				
			||||||
 | 
					# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
 | 
				
			||||||
 | 
					# you can install specific ipex/torch version for your need
 | 
				
			||||||
 | 
					pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 2. Configures OneAPI environment variables
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					source /opt/intel/oneapi/setvars.sh
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 3. Run
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					For optimal performance on Arc, it is recommended to set several environment variables.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```bash
 | 
				
			||||||
 | 
					export USE_XETLA=OFF
 | 
				
			||||||
 | 
					export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					**Stream Chat using `stream_chat()` API**:
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					**Chat using `chat()` API**:
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION --disable-stream
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Arguments info:
 | 
				
			||||||
 | 
					- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm2-6b'`.
 | 
				
			||||||
 | 
					- `--question QUESTION`: argument defining the question to ask. It is default to be `"晚上睡不着应该怎么办"`.
 | 
				
			||||||
 | 
					- `--disable-stream`: argument defining whether to stream chat. If include `--disable-stream` when running the script, the stream chat is disabled and `chat()` API is used.
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -15,13 +15,13 @@
 | 
				
			||||||
#
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
 | 
					import intel_extension_for_pytorch as ipex
 | 
				
			||||||
import time
 | 
					import time
 | 
				
			||||||
import argparse
 | 
					import argparse
 | 
				
			||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from bigdl.llm.transformers import AutoModel
 | 
					from bigdl.llm.transformers import AutoModel
 | 
				
			||||||
from transformers import AutoTokenizer
 | 
					from transformers import AutoTokenizer
 | 
				
			||||||
import intel_extension_for_pytorch as ipex
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
# you could tune the prompt based on your own model,
 | 
					# you could tune the prompt based on your own model,
 | 
				
			||||||
# here the prompt tuning refers to https://huggingface.co/THUDM/chatglm2-6b/blob/main/modeling_chatglm.py#L1007
 | 
					# here the prompt tuning refers to https://huggingface.co/THUDM/chatglm2-6b/blob/main/modeling_chatglm.py#L1007
 | 
				
			||||||
| 
						 | 
					@ -56,6 +56,11 @@ if __name__ == '__main__':
 | 
				
			||||||
    with torch.inference_mode():
 | 
					    with torch.inference_mode():
 | 
				
			||||||
        prompt = CHATGLM_V2_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
					        prompt = CHATGLM_V2_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
				
			||||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
					        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
				
			||||||
 | 
					        # ipex model needs a warmup, then inference time can be accurate
 | 
				
			||||||
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
 | 
					                                max_new_tokens=args.n_predict)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # start inference
 | 
				
			||||||
        st = time.time()
 | 
					        st = time.time()
 | 
				
			||||||
        # if your selected model is capable of utilizing previous key/value attentions
 | 
					        # if your selected model is capable of utilizing previous key/value attentions
 | 
				
			||||||
        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
					        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,72 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import intel_extension_for_pytorch as ipex
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from bigdl.llm.transformers import AutoModel
 | 
				
			||||||
 | 
					from transformers import AutoTokenizer
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(description='Stream Chat for ChatGLM2 model')
 | 
				
			||||||
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="/mnt/disk1/models/chatglm2-6b",
 | 
				
			||||||
 | 
					                        help='The huggingface repo id for the ChatGLM2 model to be downloaded'
 | 
				
			||||||
 | 
					                             ', or the path to the huggingface checkpoint folder')
 | 
				
			||||||
 | 
					    parser.add_argument('--question', type=str, default="晚上睡不着应该怎么办",
 | 
				
			||||||
 | 
					                        help='Qustion you want to ask')
 | 
				
			||||||
 | 
					    parser.add_argument('--disable-stream', action="store_true",
 | 
				
			||||||
 | 
					                        help='Disable stream chat')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path
 | 
				
			||||||
 | 
					    disable_stream = args.disable_stream
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load model in 4 bit,
 | 
				
			||||||
 | 
					    # which convert the relevant layers in the model into INT4 format
 | 
				
			||||||
 | 
					    model = AutoModel.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                      load_in_4bit=True,
 | 
				
			||||||
 | 
					                                      trust_remote_code=True,
 | 
				
			||||||
 | 
					                                      optimize_model=False)
 | 
				
			||||||
 | 
					    model.to('xpu')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Load tokenizer
 | 
				
			||||||
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                              trust_remote_code=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    with torch.inference_mode():
 | 
				
			||||||
 | 
					        prompt = args.question
 | 
				
			||||||
 | 
					        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
				
			||||||
 | 
					        # ipex model needs a warmup, then inference time can be accurate
 | 
				
			||||||
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
 | 
					                                max_new_tokens=32)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # start inference
 | 
				
			||||||
 | 
					        if disable_stream:
 | 
				
			||||||
 | 
					            # Chat
 | 
				
			||||||
 | 
					            response, history = model.chat(tokenizer, args.question, history=[])
 | 
				
			||||||
 | 
					            print('-'*20, 'Chat Output', '-'*20)
 | 
				
			||||||
 | 
					            print(response)
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            # Stream chat
 | 
				
			||||||
 | 
					            response_ = ""
 | 
				
			||||||
 | 
					            print('-'*20, 'Stream Chat Output', '-'*20)
 | 
				
			||||||
 | 
					            for response, history in model.stream_chat(tokenizer, args.question, history=[]):
 | 
				
			||||||
 | 
					                print(response.replace(response_, ""), end="")
 | 
				
			||||||
 | 
					                response_ = response
 | 
				
			||||||
| 
						 | 
					@ -15,12 +15,12 @@
 | 
				
			||||||
#
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
 | 
					import intel_extension_for_pytorch as ipex
 | 
				
			||||||
import time
 | 
					import time
 | 
				
			||||||
import argparse
 | 
					import argparse
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from bigdl.llm.transformers import AutoModelForCausalLM
 | 
					from bigdl.llm.transformers import AutoModelForCausalLM
 | 
				
			||||||
from transformers import AutoTokenizer
 | 
					from transformers import AutoTokenizer
 | 
				
			||||||
import intel_extension_for_pytorch as ipex
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
# you could tune the prompt based on your own model,
 | 
					# you could tune the prompt based on your own model,
 | 
				
			||||||
FALCON_PROMPT_FORMAT = "<human> {prompt} <bot>"
 | 
					FALCON_PROMPT_FORMAT = "<human> {prompt} <bot>"
 | 
				
			||||||
| 
						 | 
					@ -46,7 +46,7 @@ if __name__ == '__main__':
 | 
				
			||||||
                                                 load_in_4bit=True,
 | 
					                                                 load_in_4bit=True,
 | 
				
			||||||
                                                 optimize_model=False,
 | 
					                                                 optimize_model=False,
 | 
				
			||||||
                                                 trust_remote_code=True)
 | 
					                                                 trust_remote_code=True)
 | 
				
			||||||
    model = model.half().to('xpu')
 | 
					    model = model.to('xpu')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Load tokenizer
 | 
					    # Load tokenizer
 | 
				
			||||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
				
			||||||
| 
						 | 
					@ -56,6 +56,12 @@ if __name__ == '__main__':
 | 
				
			||||||
    with torch.inference_mode():
 | 
					    with torch.inference_mode():
 | 
				
			||||||
        prompt = FALCON_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
					        prompt = FALCON_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
				
			||||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
					        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # ipex model needs a warmup, then inference time can be accurate
 | 
				
			||||||
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
 | 
					                                max_new_tokens=args.n_predict)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # start inference
 | 
				
			||||||
        st = time.time()
 | 
					        st = time.time()
 | 
				
			||||||
        # if your selected model is capable of utilizing previous key/value attentions
 | 
					        # if your selected model is capable of utilizing previous key/value attentions
 | 
				
			||||||
        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
					        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -15,12 +15,12 @@
 | 
				
			||||||
#
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
 | 
					import intel_extension_for_pytorch as ipex
 | 
				
			||||||
import time
 | 
					import time
 | 
				
			||||||
import argparse
 | 
					import argparse
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from bigdl.llm.transformers import AutoModelForCausalLM
 | 
					from bigdl.llm.transformers import AutoModelForCausalLM
 | 
				
			||||||
from transformers import AutoTokenizer
 | 
					from transformers import AutoTokenizer
 | 
				
			||||||
import intel_extension_for_pytorch as ipex
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
# you could tune the prompt based on your own model,
 | 
					# you could tune the prompt based on your own model,
 | 
				
			||||||
# here the prompt tuning refers to https://huggingface.co/internlm/internlm-chat-7b-8k/blob/main/modeling_internlm.py#L768
 | 
					# here the prompt tuning refers to https://huggingface.co/internlm/internlm-chat-7b-8k/blob/main/modeling_internlm.py#L768
 | 
				
			||||||
| 
						 | 
					@ -45,7 +45,7 @@ if __name__ == '__main__':
 | 
				
			||||||
                                                 load_in_4bit=True,
 | 
					                                                 load_in_4bit=True,
 | 
				
			||||||
                                                 optimize_model=False,
 | 
					                                                 optimize_model=False,
 | 
				
			||||||
                                                 trust_remote_code=True)
 | 
					                                                 trust_remote_code=True)
 | 
				
			||||||
    model = model.half().to('xpu')
 | 
					    model = model.to('xpu')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Load tokenizer
 | 
					    # Load tokenizer
 | 
				
			||||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
				
			||||||
| 
						 | 
					@ -55,6 +55,11 @@ if __name__ == '__main__':
 | 
				
			||||||
    with torch.inference_mode():
 | 
					    with torch.inference_mode():
 | 
				
			||||||
        prompt = INTERNLM_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
					        prompt = INTERNLM_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
				
			||||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
					        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
				
			||||||
 | 
					        # ipex model needs a warmup, then inference time can be accurate
 | 
				
			||||||
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
 | 
					                                max_new_tokens=args.n_predict)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # start inference
 | 
				
			||||||
        st = time.time()
 | 
					        st = time.time()
 | 
				
			||||||
        # if your selected model is capable of utilizing previous key/value attentions
 | 
					        # if your selected model is capable of utilizing previous key/value attentions
 | 
				
			||||||
        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
					        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -15,12 +15,12 @@
 | 
				
			||||||
#
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
 | 
					import intel_extension_for_pytorch as ipex
 | 
				
			||||||
import time
 | 
					import time
 | 
				
			||||||
import argparse
 | 
					import argparse
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from bigdl.llm.transformers import AutoModelForCausalLM
 | 
					from bigdl.llm.transformers import AutoModelForCausalLM
 | 
				
			||||||
from transformers import LlamaTokenizer
 | 
					from transformers import LlamaTokenizer
 | 
				
			||||||
import intel_extension_for_pytorch as ipex
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
# you could tune the prompt based on your own model,
 | 
					# you could tune the prompt based on your own model,
 | 
				
			||||||
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
 | 
					# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
 | 
				
			||||||
| 
						 | 
					@ -58,6 +58,11 @@ if __name__ == '__main__':
 | 
				
			||||||
    with torch.inference_mode():
 | 
					    with torch.inference_mode():
 | 
				
			||||||
        prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
					        prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
				
			||||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
					        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
				
			||||||
 | 
					        # ipex model needs a warmup, then inference time can be accurate
 | 
				
			||||||
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
 | 
					                                max_new_tokens=args.n_predict)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # start inference
 | 
				
			||||||
        st = time.time()
 | 
					        st = time.time()
 | 
				
			||||||
        # if your selected model is capable of utilizing previous key/value attentions
 | 
					        # if your selected model is capable of utilizing previous key/value attentions
 | 
				
			||||||
        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
					        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -15,12 +15,12 @@
 | 
				
			||||||
#
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
 | 
					import intel_extension_for_pytorch as ipex
 | 
				
			||||||
import time
 | 
					import time
 | 
				
			||||||
import argparse
 | 
					import argparse
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from bigdl.llm.transformers import AutoModelForCausalLM
 | 
					from bigdl.llm.transformers import AutoModelForCausalLM
 | 
				
			||||||
from transformers import AutoTokenizer, GenerationConfig
 | 
					from transformers import AutoTokenizer, GenerationConfig
 | 
				
			||||||
import intel_extension_for_pytorch as ipex
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
# you could tune the prompt based on your own model,
 | 
					# you could tune the prompt based on your own model,
 | 
				
			||||||
# here the prompt tuning refers to https://huggingface.co/spaces/mosaicml/mpt-30b-chat/blob/main/app.py
 | 
					# here the prompt tuning refers to https://huggingface.co/spaces/mosaicml/mpt-30b-chat/blob/main/app.py
 | 
				
			||||||
| 
						 | 
					@ -46,7 +46,7 @@ if __name__ == '__main__':
 | 
				
			||||||
                                                 load_in_4bit=True,
 | 
					                                                 load_in_4bit=True,
 | 
				
			||||||
                                                 optimize_model=False,
 | 
					                                                 optimize_model=False,
 | 
				
			||||||
                                                 trust_remote_code=True)
 | 
					                                                 trust_remote_code=True)
 | 
				
			||||||
    model = model.half().to('xpu')
 | 
					    model = model.to('xpu')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Load tokenizer
 | 
					    # Load tokenizer
 | 
				
			||||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
				
			||||||
| 
						 | 
					@ -56,6 +56,11 @@ if __name__ == '__main__':
 | 
				
			||||||
    with torch.inference_mode():
 | 
					    with torch.inference_mode():
 | 
				
			||||||
        prompt = MPT_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
					        prompt = MPT_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
				
			||||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
					        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
				
			||||||
 | 
					        # ipex model needs a warmup, then inference time can be accurate
 | 
				
			||||||
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
 | 
					                                max_new_tokens=args.n_predict)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # start inference
 | 
				
			||||||
        # enabling `use_cache=True` allows the model to utilize the previous
 | 
					        # enabling `use_cache=True` allows the model to utilize the previous
 | 
				
			||||||
        # key/values attentions to speed up decoding;
 | 
					        # key/values attentions to speed up decoding;
 | 
				
			||||||
        # to obtain optimal performance with BigDL-LLM INT4 optimizations,
 | 
					        # to obtain optimal performance with BigDL-LLM INT4 optimizations,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -15,12 +15,12 @@
 | 
				
			||||||
#
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
 | 
					import intel_extension_for_pytorch as ipex
 | 
				
			||||||
import time
 | 
					import time
 | 
				
			||||||
import argparse
 | 
					import argparse
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from bigdl.llm.transformers import AutoModelForCausalLM
 | 
					from bigdl.llm.transformers import AutoModelForCausalLM
 | 
				
			||||||
from transformers import AutoTokenizer
 | 
					from transformers import AutoTokenizer
 | 
				
			||||||
import intel_extension_for_pytorch as ipex
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
# you could tune the prompt based on your own model
 | 
					# you could tune the prompt based on your own model
 | 
				
			||||||
QWEN_PROMPT_FORMAT = "<human>{prompt} <bot>"
 | 
					QWEN_PROMPT_FORMAT = "<human>{prompt} <bot>"
 | 
				
			||||||
| 
						 | 
					@ -44,7 +44,7 @@ if __name__ == '__main__':
 | 
				
			||||||
                                                 load_in_4bit=True,
 | 
					                                                 load_in_4bit=True,
 | 
				
			||||||
                                                 optimize_model=False,
 | 
					                                                 optimize_model=False,
 | 
				
			||||||
                                                 trust_remote_code=True)
 | 
					                                                 trust_remote_code=True)
 | 
				
			||||||
    model = model.half().to('xpu')
 | 
					    model = model.to('xpu')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Load tokenizer
 | 
					    # Load tokenizer
 | 
				
			||||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
				
			||||||
| 
						 | 
					@ -54,16 +54,17 @@ if __name__ == '__main__':
 | 
				
			||||||
    with torch.inference_mode():
 | 
					    with torch.inference_mode():
 | 
				
			||||||
        prompt = QWEN_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
					        prompt = QWEN_PROMPT_FORMAT.format(prompt=args.prompt)
 | 
				
			||||||
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
					        input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
 | 
				
			||||||
 | 
					        # ipex model needs a warmup, then inference time can be accurate
 | 
				
			||||||
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
 | 
					                                max_new_tokens=args.n_predict)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # start inference
 | 
				
			||||||
        st = time.time()
 | 
					        st = time.time()
 | 
				
			||||||
        # if your selected model is capable of utilizing previous key/value attentions
 | 
					        # if your selected model is capable of utilizing previous key/value attentions
 | 
				
			||||||
        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
					        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
				
			||||||
        # it is important to set `use_cache=True` explicitly in the `generate` function
 | 
					        # it is important to set `use_cache=True` explicitly in the `generate` function
 | 
				
			||||||
        # to obtain optimal performance with BigDL-LLM INT4 optimizations
 | 
					        # to obtain optimal performance with BigDL-LLM INT4 optimizations
 | 
				
			||||||
        # if your selected model has `"do_sample": true` in its generation config,
 | 
					 | 
				
			||||||
        # it is important to set `do_sample=False` explicitly in the `generate` function
 | 
					 | 
				
			||||||
        # to obtain optimal performance with BigDL-LLM INT4 optimizations
 | 
					 | 
				
			||||||
        output = model.generate(input_ids,
 | 
					        output = model.generate(input_ids,
 | 
				
			||||||
                                do_sample=False,
 | 
					 | 
				
			||||||
                                max_new_tokens=args.n_predict)
 | 
					                                max_new_tokens=args.n_predict)
 | 
				
			||||||
        torch.xpu.synchronize()
 | 
					        torch.xpu.synchronize()
 | 
				
			||||||
        end = time.time()
 | 
					        end = time.time()
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -15,13 +15,14 @@
 | 
				
			||||||
#
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
 | 
					import intel_extension_for_pytorch as ipex
 | 
				
			||||||
import time
 | 
					import time
 | 
				
			||||||
import argparse
 | 
					import argparse
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from bigdl.llm.transformers import AutoModelForSpeechSeq2Seq
 | 
					from bigdl.llm.transformers import AutoModelForSpeechSeq2Seq
 | 
				
			||||||
from transformers import WhisperProcessor
 | 
					from transformers import WhisperProcessor
 | 
				
			||||||
from datasets import load_dataset
 | 
					from datasets import load_dataset
 | 
				
			||||||
import intel_extension_for_pytorch as ipex
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__ == '__main__':
 | 
					if __name__ == '__main__':
 | 
				
			||||||
    parser = argparse.ArgumentParser(description='Recognize Tokens using `generate()` API for Whisper model')
 | 
					    parser = argparse.ArgumentParser(description='Recognize Tokens using `generate()` API for Whisper model')
 | 
				
			||||||
| 
						 | 
					@ -45,7 +46,7 @@ if __name__ == '__main__':
 | 
				
			||||||
    model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path,
 | 
					    model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path,
 | 
				
			||||||
                                                      load_in_4bit=True,
 | 
					                                                      load_in_4bit=True,
 | 
				
			||||||
                                                      optimize_model=False)
 | 
					                                                      optimize_model=False)
 | 
				
			||||||
    model.half().to('xpu')
 | 
					    model.to('xpu')
 | 
				
			||||||
    model.config.forced_decoder_ids = None
 | 
					    model.config.forced_decoder_ids = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Load processor
 | 
					    # Load processor
 | 
				
			||||||
| 
						 | 
					@ -61,7 +62,7 @@ if __name__ == '__main__':
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        input_features = processor(sample["array"],
 | 
					        input_features = processor(sample["array"],
 | 
				
			||||||
                                   sampling_rate=sample["sampling_rate"],
 | 
					                                   sampling_rate=sample["sampling_rate"],
 | 
				
			||||||
                                   return_tensors="pt").input_features.half().to('xpu')
 | 
					                                   return_tensors="pt").input_features.to('xpu')
 | 
				
			||||||
        st = time.time()
 | 
					        st = time.time()
 | 
				
			||||||
        # if your selected model is capable of utilizing previous key/value attentions
 | 
					        # if your selected model is capable of utilizing previous key/value attentions
 | 
				
			||||||
        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
					        # to enhance decoding speed, but has `"use_cache": false` in its model config,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue