llm: update all ARC int4 examples (#8809)
* update GPU examples * update other examples * fix * update based on comment
This commit is contained in:
parent
b8b1b6888b
commit
0186f3ab2f
10 changed files with 166 additions and 24 deletions
|
|
@ -15,12 +15,12 @@
|
|||
#
|
||||
|
||||
import torch
|
||||
import intel_extension_for_pytorch as ipex
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
BAICHUAN_PROMPT_FORMAT = "<human>{prompt} <bot>"
|
||||
|
|
@ -44,7 +44,7 @@ if __name__ == '__main__':
|
|||
load_in_4bit=True,
|
||||
optimize_model=False,
|
||||
trust_remote_code=True)
|
||||
model = model.half().to('xpu')
|
||||
model = model.to('xpu')
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||
|
|
@ -54,16 +54,17 @@ if __name__ == '__main__':
|
|||
with torch.inference_mode():
|
||||
prompt = BAICHUAN_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
# ipex model needs a warmup, then inference time can be accurate
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
|
||||
# start inference
|
||||
st = time.time()
|
||||
# if your selected model is capable of utilizing previous key/value attentions
|
||||
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||
# it is important to set `use_cache=True` explicitly in the `generate` function
|
||||
# to obtain optimal performance with BigDL-LLM INT4 optimizations
|
||||
# if your selected model has `"do_sample": true` in its generation config,
|
||||
# it is important to set `do_sample=False` explicitly in the `generate` function
|
||||
# to obtain optimal performance with BigDL-LLM INT4 optimizations
|
||||
output = model.generate(input_ids,
|
||||
do_sample=False,
|
||||
max_new_tokens=args.n_predict)
|
||||
torch.xpu.synchronize()
|
||||
end = time.time()
|
||||
|
|
|
|||
|
|
@ -65,3 +65,44 @@ Inference time: xxxx s
|
|||
|
||||
答: Artificial Intelligence (AI) refers to the ability of a computer or machine to perform tasks that typically require human-like intelligence, such as understanding language, recognizing patterns
|
||||
```
|
||||
|
||||
## Example 2: Stream Chat using `stream_chat()` API
|
||||
In the example [streamchat.py](./streamchat.py), we show a basic use case for a ChatGLM2 model to stream chat, with BigDL-LLM INT4 optimizations.
|
||||
### 1. Install
|
||||
We suggest using conda to manage environment:
|
||||
```bash
|
||||
conda create -n llm python=3.9
|
||||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||
# you can install specific ipex/torch version for your need
|
||||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
### 3. Run
|
||||
|
||||
For optimal performance on Arc, it is recommended to set several environment variables.
|
||||
|
||||
```bash
|
||||
export USE_XETLA=OFF
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
```
|
||||
|
||||
**Stream Chat using `stream_chat()` API**:
|
||||
```
|
||||
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION
|
||||
```
|
||||
|
||||
**Chat using `chat()` API**:
|
||||
```
|
||||
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION --disable-stream
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm2-6b'`.
|
||||
- `--question QUESTION`: argument defining the question to ask. It is default to be `"晚上睡不着应该怎么办"`.
|
||||
- `--disable-stream`: argument defining whether to stream chat. If include `--disable-stream` when running the script, the stream chat is disabled and `chat()` API is used.
|
||||
|
|
|
|||
|
|
@ -15,13 +15,13 @@
|
|||
#
|
||||
|
||||
import torch
|
||||
import intel_extension_for_pytorch as ipex
|
||||
import time
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
from bigdl.llm.transformers import AutoModel
|
||||
from transformers import AutoTokenizer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
# here the prompt tuning refers to https://huggingface.co/THUDM/chatglm2-6b/blob/main/modeling_chatglm.py#L1007
|
||||
|
|
@ -56,6 +56,11 @@ if __name__ == '__main__':
|
|||
with torch.inference_mode():
|
||||
prompt = CHATGLM_V2_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
# ipex model needs a warmup, then inference time can be accurate
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
|
||||
# start inference
|
||||
st = time.time()
|
||||
# if your selected model is capable of utilizing previous key/value attentions
|
||||
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||
|
|
|
|||
|
|
@ -0,0 +1,72 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import torch
|
||||
import intel_extension_for_pytorch as ipex
|
||||
import time
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
from bigdl.llm.transformers import AutoModel
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Stream Chat for ChatGLM2 model')
|
||||
parser.add_argument('--repo-id-or-model-path', type=str, default="/mnt/disk1/models/chatglm2-6b",
|
||||
help='The huggingface repo id for the ChatGLM2 model to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--question', type=str, default="晚上睡不着应该怎么办",
|
||||
help='Qustion you want to ask')
|
||||
parser.add_argument('--disable-stream', action="store_true",
|
||||
help='Disable stream chat')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_path = args.repo_id_or_model_path
|
||||
disable_stream = args.disable_stream
|
||||
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
model = AutoModel.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
trust_remote_code=True,
|
||||
optimize_model=False)
|
||||
model.to('xpu')
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||
trust_remote_code=True)
|
||||
|
||||
with torch.inference_mode():
|
||||
prompt = args.question
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
# ipex model needs a warmup, then inference time can be accurate
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=32)
|
||||
|
||||
# start inference
|
||||
if disable_stream:
|
||||
# Chat
|
||||
response, history = model.chat(tokenizer, args.question, history=[])
|
||||
print('-'*20, 'Chat Output', '-'*20)
|
||||
print(response)
|
||||
else:
|
||||
# Stream chat
|
||||
response_ = ""
|
||||
print('-'*20, 'Stream Chat Output', '-'*20)
|
||||
for response, history in model.stream_chat(tokenizer, args.question, history=[]):
|
||||
print(response.replace(response_, ""), end="")
|
||||
response_ = response
|
||||
|
|
@ -15,12 +15,12 @@
|
|||
#
|
||||
|
||||
import torch
|
||||
import intel_extension_for_pytorch as ipex
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
FALCON_PROMPT_FORMAT = "<human> {prompt} <bot>"
|
||||
|
|
@ -46,7 +46,7 @@ if __name__ == '__main__':
|
|||
load_in_4bit=True,
|
||||
optimize_model=False,
|
||||
trust_remote_code=True)
|
||||
model = model.half().to('xpu')
|
||||
model = model.to('xpu')
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||
|
|
@ -56,6 +56,12 @@ if __name__ == '__main__':
|
|||
with torch.inference_mode():
|
||||
prompt = FALCON_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
|
||||
# ipex model needs a warmup, then inference time can be accurate
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
|
||||
# start inference
|
||||
st = time.time()
|
||||
# if your selected model is capable of utilizing previous key/value attentions
|
||||
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||
|
|
|
|||
|
|
@ -15,12 +15,12 @@
|
|||
#
|
||||
|
||||
import torch
|
||||
import intel_extension_for_pytorch as ipex
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
# here the prompt tuning refers to https://huggingface.co/internlm/internlm-chat-7b-8k/blob/main/modeling_internlm.py#L768
|
||||
|
|
@ -45,7 +45,7 @@ if __name__ == '__main__':
|
|||
load_in_4bit=True,
|
||||
optimize_model=False,
|
||||
trust_remote_code=True)
|
||||
model = model.half().to('xpu')
|
||||
model = model.to('xpu')
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||
|
|
@ -55,6 +55,11 @@ if __name__ == '__main__':
|
|||
with torch.inference_mode():
|
||||
prompt = INTERNLM_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
# ipex model needs a warmup, then inference time can be accurate
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
|
||||
# start inference
|
||||
st = time.time()
|
||||
# if your selected model is capable of utilizing previous key/value attentions
|
||||
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||
|
|
|
|||
|
|
@ -15,12 +15,12 @@
|
|||
#
|
||||
|
||||
import torch
|
||||
import intel_extension_for_pytorch as ipex
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
from transformers import LlamaTokenizer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
|
||||
|
|
@ -58,6 +58,11 @@ if __name__ == '__main__':
|
|||
with torch.inference_mode():
|
||||
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
# ipex model needs a warmup, then inference time can be accurate
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
|
||||
# start inference
|
||||
st = time.time()
|
||||
# if your selected model is capable of utilizing previous key/value attentions
|
||||
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||
|
|
|
|||
|
|
@ -15,12 +15,12 @@
|
|||
#
|
||||
|
||||
import torch
|
||||
import intel_extension_for_pytorch as ipex
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, GenerationConfig
|
||||
import intel_extension_for_pytorch as ipex
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
# here the prompt tuning refers to https://huggingface.co/spaces/mosaicml/mpt-30b-chat/blob/main/app.py
|
||||
|
|
@ -46,7 +46,7 @@ if __name__ == '__main__':
|
|||
load_in_4bit=True,
|
||||
optimize_model=False,
|
||||
trust_remote_code=True)
|
||||
model = model.half().to('xpu')
|
||||
model = model.to('xpu')
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||
|
|
@ -56,6 +56,11 @@ if __name__ == '__main__':
|
|||
with torch.inference_mode():
|
||||
prompt = MPT_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
# ipex model needs a warmup, then inference time can be accurate
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
|
||||
# start inference
|
||||
# enabling `use_cache=True` allows the model to utilize the previous
|
||||
# key/values attentions to speed up decoding;
|
||||
# to obtain optimal performance with BigDL-LLM INT4 optimizations,
|
||||
|
|
|
|||
|
|
@ -15,12 +15,12 @@
|
|||
#
|
||||
|
||||
import torch
|
||||
import intel_extension_for_pytorch as ipex
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
|
||||
# you could tune the prompt based on your own model
|
||||
QWEN_PROMPT_FORMAT = "<human>{prompt} <bot>"
|
||||
|
|
@ -44,7 +44,7 @@ if __name__ == '__main__':
|
|||
load_in_4bit=True,
|
||||
optimize_model=False,
|
||||
trust_remote_code=True)
|
||||
model = model.half().to('xpu')
|
||||
model = model.to('xpu')
|
||||
|
||||
# Load tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
||||
|
|
@ -54,16 +54,17 @@ if __name__ == '__main__':
|
|||
with torch.inference_mode():
|
||||
prompt = QWEN_PROMPT_FORMAT.format(prompt=args.prompt)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
# ipex model needs a warmup, then inference time can be accurate
|
||||
output = model.generate(input_ids,
|
||||
max_new_tokens=args.n_predict)
|
||||
|
||||
# start inference
|
||||
st = time.time()
|
||||
# if your selected model is capable of utilizing previous key/value attentions
|
||||
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||
# it is important to set `use_cache=True` explicitly in the `generate` function
|
||||
# to obtain optimal performance with BigDL-LLM INT4 optimizations
|
||||
# if your selected model has `"do_sample": true` in its generation config,
|
||||
# it is important to set `do_sample=False` explicitly in the `generate` function
|
||||
# to obtain optimal performance with BigDL-LLM INT4 optimizations
|
||||
output = model.generate(input_ids,
|
||||
do_sample=False,
|
||||
max_new_tokens=args.n_predict)
|
||||
torch.xpu.synchronize()
|
||||
end = time.time()
|
||||
|
|
|
|||
|
|
@ -15,13 +15,14 @@
|
|||
#
|
||||
|
||||
import torch
|
||||
import intel_extension_for_pytorch as ipex
|
||||
import time
|
||||
import argparse
|
||||
|
||||
from bigdl.llm.transformers import AutoModelForSpeechSeq2Seq
|
||||
from transformers import WhisperProcessor
|
||||
from datasets import load_dataset
|
||||
import intel_extension_for_pytorch as ipex
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Recognize Tokens using `generate()` API for Whisper model')
|
||||
|
|
@ -45,7 +46,7 @@ if __name__ == '__main__':
|
|||
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path,
|
||||
load_in_4bit=True,
|
||||
optimize_model=False)
|
||||
model.half().to('xpu')
|
||||
model.to('xpu')
|
||||
model.config.forced_decoder_ids = None
|
||||
|
||||
# Load processor
|
||||
|
|
@ -61,7 +62,7 @@ if __name__ == '__main__':
|
|||
|
||||
input_features = processor(sample["array"],
|
||||
sampling_rate=sample["sampling_rate"],
|
||||
return_tensors="pt").input_features.half().to('xpu')
|
||||
return_tensors="pt").input_features.to('xpu')
|
||||
st = time.time()
|
||||
# if your selected model is capable of utilizing previous key/value attentions
|
||||
# to enhance decoding speed, but has `"use_cache": false` in its model config,
|
||||
|
|
@ -73,4 +74,4 @@ if __name__ == '__main__':
|
|||
output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
||||
print(f'Inference time: {end-st} s')
|
||||
print('-'*20, 'Output', '-'*20)
|
||||
print(output_str)
|
||||
print(output_str)
|
||||
|
|
|
|||
Loading…
Reference in a new issue