llm: update all ARC int4 examples (#8809)

* update GPU examples

* update other examples

* fix

* update based on comment
This commit is contained in:
Ruonan Wang 2023-08-25 15:26:10 +08:00 committed by GitHub
parent b8b1b6888b
commit 0186f3ab2f
10 changed files with 166 additions and 24 deletions

View file

@ -15,12 +15,12 @@
#
import torch
import intel_extension_for_pytorch as ipex
import time
import argparse
from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
import intel_extension_for_pytorch as ipex
# you could tune the prompt based on your own model,
BAICHUAN_PROMPT_FORMAT = "<human>{prompt} <bot>"
@ -44,7 +44,7 @@ if __name__ == '__main__':
load_in_4bit=True,
optimize_model=False,
trust_remote_code=True)
model = model.half().to('xpu')
model = model.to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
@ -54,16 +54,17 @@ if __name__ == '__main__':
with torch.inference_mode():
prompt = BAICHUAN_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
# start inference
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
# if your selected model has `"do_sample": true` in its generation config,
# it is important to set `do_sample=False` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
output = model.generate(input_ids,
do_sample=False,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()

View file

@ -65,3 +65,44 @@ Inference time: xxxx s
答: Artificial Intelligence (AI) refers to the ability of a computer or machine to perform tasks that typically require human-like intelligence, such as understanding language, recognizing patterns
```
## Example 2: Stream Chat using `stream_chat()` API
In the example [streamchat.py](./streamchat.py), we show a basic use case for a ChatGLM2 model to stream chat, with BigDL-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
```
### 2. Configures OneAPI environment variables
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Run
For optimal performance on Arc, it is recommended to set several environment variables.
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```
**Stream Chat using `stream_chat()` API**:
```
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION
```
**Chat using `chat()` API**:
```
python ./streamchat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --question QUESTION --disable-stream
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the ChatGLM2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/chatglm2-6b'`.
- `--question QUESTION`: argument defining the question to ask. It is default to be `"晚上睡不着应该怎么办"`.
- `--disable-stream`: argument defining whether to stream chat. If include `--disable-stream` when running the script, the stream chat is disabled and `chat()` API is used.

View file

@ -15,13 +15,13 @@
#
import torch
import intel_extension_for_pytorch as ipex
import time
import argparse
import numpy as np
from bigdl.llm.transformers import AutoModel
from transformers import AutoTokenizer
import intel_extension_for_pytorch as ipex
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/THUDM/chatglm2-6b/blob/main/modeling_chatglm.py#L1007
@ -56,6 +56,11 @@ if __name__ == '__main__':
with torch.inference_mode():
prompt = CHATGLM_V2_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
# start inference
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,

View file

@ -0,0 +1,72 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
import intel_extension_for_pytorch as ipex
import time
import argparse
import numpy as np
from bigdl.llm.transformers import AutoModel
from transformers import AutoTokenizer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Stream Chat for ChatGLM2 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="/mnt/disk1/models/chatglm2-6b",
help='The huggingface repo id for the ChatGLM2 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--question', type=str, default="晚上睡不着应该怎么办",
help='Qustion you want to ask')
parser.add_argument('--disable-stream', action="store_true",
help='Disable stream chat')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
disable_stream = args.disable_stream
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModel.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True,
optimize_model=False)
model.to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
with torch.inference_mode():
prompt = args.question
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=32)
# start inference
if disable_stream:
# Chat
response, history = model.chat(tokenizer, args.question, history=[])
print('-'*20, 'Chat Output', '-'*20)
print(response)
else:
# Stream chat
response_ = ""
print('-'*20, 'Stream Chat Output', '-'*20)
for response, history in model.stream_chat(tokenizer, args.question, history=[]):
print(response.replace(response_, ""), end="")
response_ = response

View file

@ -15,12 +15,12 @@
#
import torch
import intel_extension_for_pytorch as ipex
import time
import argparse
from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
import intel_extension_for_pytorch as ipex
# you could tune the prompt based on your own model,
FALCON_PROMPT_FORMAT = "<human> {prompt} <bot>"
@ -46,7 +46,7 @@ if __name__ == '__main__':
load_in_4bit=True,
optimize_model=False,
trust_remote_code=True)
model = model.half().to('xpu')
model = model.to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
@ -56,6 +56,12 @@ if __name__ == '__main__':
with torch.inference_mode():
prompt = FALCON_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
# start inference
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,

View file

@ -15,12 +15,12 @@
#
import torch
import intel_extension_for_pytorch as ipex
import time
import argparse
from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
import intel_extension_for_pytorch as ipex
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/internlm/internlm-chat-7b-8k/blob/main/modeling_internlm.py#L768
@ -45,7 +45,7 @@ if __name__ == '__main__':
load_in_4bit=True,
optimize_model=False,
trust_remote_code=True)
model = model.half().to('xpu')
model = model.to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
@ -55,6 +55,11 @@ if __name__ == '__main__':
with torch.inference_mode():
prompt = INTERNLM_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
# start inference
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,

View file

@ -15,12 +15,12 @@
#
import torch
import intel_extension_for_pytorch as ipex
import time
import argparse
from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import LlamaTokenizer
import intel_extension_for_pytorch as ipex
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
@ -58,6 +58,11 @@ if __name__ == '__main__':
with torch.inference_mode():
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
# start inference
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,

View file

@ -15,12 +15,12 @@
#
import torch
import intel_extension_for_pytorch as ipex
import time
import argparse
from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer, GenerationConfig
import intel_extension_for_pytorch as ipex
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/spaces/mosaicml/mpt-30b-chat/blob/main/app.py
@ -46,7 +46,7 @@ if __name__ == '__main__':
load_in_4bit=True,
optimize_model=False,
trust_remote_code=True)
model = model.half().to('xpu')
model = model.to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
@ -56,6 +56,11 @@ if __name__ == '__main__':
with torch.inference_mode():
prompt = MPT_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
# start inference
# enabling `use_cache=True` allows the model to utilize the previous
# key/values attentions to speed up decoding;
# to obtain optimal performance with BigDL-LLM INT4 optimizations,

View file

@ -15,12 +15,12 @@
#
import torch
import intel_extension_for_pytorch as ipex
import time
import argparse
from bigdl.llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
import intel_extension_for_pytorch as ipex
# you could tune the prompt based on your own model
QWEN_PROMPT_FORMAT = "<human>{prompt} <bot>"
@ -44,7 +44,7 @@ if __name__ == '__main__':
load_in_4bit=True,
optimize_model=False,
trust_remote_code=True)
model = model.half().to('xpu')
model = model.to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
@ -54,16 +54,17 @@ if __name__ == '__main__':
with torch.inference_mode():
prompt = QWEN_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
# start inference
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
# if your selected model has `"do_sample": true` in its generation config,
# it is important to set `do_sample=False` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
output = model.generate(input_ids,
do_sample=False,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()

View file

@ -15,13 +15,14 @@
#
import torch
import intel_extension_for_pytorch as ipex
import time
import argparse
from bigdl.llm.transformers import AutoModelForSpeechSeq2Seq
from transformers import WhisperProcessor
from datasets import load_dataset
import intel_extension_for_pytorch as ipex
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Recognize Tokens using `generate()` API for Whisper model')
@ -45,7 +46,7 @@ if __name__ == '__main__':
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=False)
model.half().to('xpu')
model.to('xpu')
model.config.forced_decoder_ids = None
# Load processor
@ -61,7 +62,7 @@ if __name__ == '__main__':
input_features = processor(sample["array"],
sampling_rate=sample["sampling_rate"],
return_tensors="pt").input_features.half().to('xpu')
return_tensors="pt").input_features.to('xpu')
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
@ -73,4 +74,4 @@ if __name__ == '__main__':
output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Output', '-'*20)
print(output_str)
print(output_str)