LLM: support iq1_s (#10564)
* init version * update utils * remove unsed code
This commit is contained in:
parent
f4537798c1
commit
0136fad1d4
4 changed files with 17 additions and 11 deletions
|
|
@ -42,7 +42,9 @@ ggml_tensor_qtype = {"sym_int4": 2, # q4_0 in ggml
|
|||
"bf16": 20,
|
||||
"gguf_iq2_xxs": 21,
|
||||
"gguf_iq2_xs": 22,
|
||||
"q2_k": 23}
|
||||
"q2_k": 23,
|
||||
"gguf_iq1_s": 24,
|
||||
"gguf_iq1_m": 25}
|
||||
|
||||
_llama_quantize_type = {"q4_0": 2,
|
||||
"q4_1": 3,
|
||||
|
|
|
|||
|
|
@ -73,7 +73,7 @@ FP8E5 = ggml_tensor_qtype["fp8_e5m2"]
|
|||
IQ2_XXS = ggml_tensor_qtype["gguf_iq2_xxs"]
|
||||
IQ2_XS = ggml_tensor_qtype["gguf_iq2_xs"]
|
||||
Q2_K = ggml_tensor_qtype["q2_k"]
|
||||
|
||||
IQ1_S = ggml_tensor_qtype["gguf_iq1_s"]
|
||||
|
||||
# The ggml_weight is col major and packs two rows at a stride of Q4_0//2.
|
||||
#
|
||||
|
|
@ -156,7 +156,7 @@ def ggml_convert_qtype(tensor: torch.Tensor, qtype: int,
|
|||
if not convert_shape_only and device != 'meta':
|
||||
dst = ctypes.c_void_p(dst_tensor.data.data_ptr())
|
||||
hist = (ctypes.c_int64 * 16)()
|
||||
if qtype not in [IQ2_XXS, IQ2_XS, Q2_K]:
|
||||
if qtype not in [IQ2_XXS, IQ2_XS, Q2_K, IQ1_S]:
|
||||
ggml.ggml_quantize_tensor(src, dst, qtype, n, k, hist)
|
||||
else:
|
||||
if imatrix is not None:
|
||||
|
|
|
|||
|
|
@ -118,7 +118,8 @@ class _BaseAutoModelClass:
|
|||
:param load_in_low_bit: str value, options are ``'sym_int4'``, ``'asym_int4'``,
|
||||
``'sym_int5'``, ``'asym_int5'``, ``'sym_int8'``, ``'nf3'``,
|
||||
``'nf4'``, ``'fp4'``, ``'fp8'``, ``'fp8_e4m3'``, ``'fp8_e5m2'``,
|
||||
``'gguf_iq2_xxs'``, ``'gguf_iq2_xs'``, ``'fp16'`` or ``'bf16'``,
|
||||
``'gguf_iq2_xxs'``, ``'gguf_iq2_xs'``, gguf_iq1_s'``,
|
||||
``'fp16'`` or ``'bf16'``,
|
||||
``'sym_int4'`` means symmetric int 4, ``'asym_int4'`` means
|
||||
asymmetric int 4, ``'nf4'`` means 4-bit NormalFloat, etc.
|
||||
Relevant low bit optimizations will be applied to the model.
|
||||
|
|
@ -304,14 +305,14 @@ class _BaseAutoModelClass:
|
|||
kwargs["pretraining_tp"] = 1
|
||||
q_k = load_in_low_bit if load_in_low_bit else "sym_int4"
|
||||
imatrix_file = kwargs.pop("imatrix", None)
|
||||
if q_k in ["gguf_iq2_xxs", "gguf_iq2_xs"]:
|
||||
if q_k in ["gguf_iq2_xxs", "gguf_iq2_xs", "gguf_iq1_s"]:
|
||||
invalidInputError(imatrix_file is not None,
|
||||
"For gguf_iq2_xxs and gguf_iq2_xs quantization,"
|
||||
"For gguf_iq2 and gguf_iq1 quantization,"
|
||||
"imatrix is needed.")
|
||||
cpu_embedding = kwargs.get("cpu_embedding", False)
|
||||
# for 2bit, default use embedding_quantization
|
||||
if q_k in ["gguf_iq2_xxs", "gguf_iq2_xs", "q2_k"] and not cpu_embedding and \
|
||||
embedding_qtype is None:
|
||||
if q_k in ["gguf_iq2_xxs", "gguf_iq2_xs", "gguf_iq1_s", "q2_k"] and \
|
||||
not cpu_embedding and embedding_qtype is None:
|
||||
embedding_qtype = "q2_k"
|
||||
if imatrix_file is not None:
|
||||
imatrix_data = load_imatrix_data(imatrix_file)
|
||||
|
|
@ -361,7 +362,7 @@ class _BaseAutoModelClass:
|
|||
f"Unknown load_in_low_bit value: {q_k}, expected:"
|
||||
f" sym_int4, asym_int4, sym_int5, asym_int5, sym_int8, nf3, nf4, "
|
||||
f"fp4, fp8, fp8_e4m3, fp8_e5m2, fp16, bf16, gguf_iq2_xxs, "
|
||||
f"gguf_iq2_xs, mixed_fp4 or mixed_fp8.")
|
||||
f"gguf_iq2_xs, gguf_iq1_s, mixed_fp4 or mixed_fp8.")
|
||||
qtype = ggml_tensor_qtype[q_k]
|
||||
|
||||
# In case it needs a second try,
|
||||
|
|
@ -535,7 +536,7 @@ class _BaseAutoModelClass:
|
|||
optimize_model = kwargs.pop("optimize_model", True)
|
||||
|
||||
qtype = ggml_tensor_qtype[bigdl_transformers_low_bit]
|
||||
if bigdl_transformers_low_bit in ["gguf_iq2_xxs", "gguf_iq2_xs", "q2_k"] and \
|
||||
if bigdl_transformers_low_bit in ["gguf_iq2_xxs", "gguf_iq2_xs", "gguf_iq1_s", "q2_k"] and \
|
||||
not cpu_embedding:
|
||||
embedding_qtype = "q2_k"
|
||||
if embedding_qtype is not None:
|
||||
|
|
|
|||
|
|
@ -269,7 +269,8 @@ def module_name_process(full_module_name):
|
|||
|
||||
def get_cur_qtype_and_imatrix(qtype, full_module_name, imatrix_data, model_type=None):
|
||||
cur_qtype = qtype
|
||||
if qtype in [ggml_tensor_qtype["gguf_iq2_xxs"], ggml_tensor_qtype["gguf_iq2_xs"]]:
|
||||
if qtype in [ggml_tensor_qtype["gguf_iq2_xxs"], ggml_tensor_qtype["gguf_iq2_xs"],
|
||||
ggml_tensor_qtype["gguf_iq1_s"]]:
|
||||
# For quantization which needs importance matrix
|
||||
new_module_name, layer, cur_module = module_name_process(full_module_name)
|
||||
# custom mixed quantization strategy
|
||||
|
|
@ -282,6 +283,8 @@ def get_cur_qtype_and_imatrix(qtype, full_module_name, imatrix_data, model_type=
|
|||
else:
|
||||
if cur_module == 'v' or (cur_module == 'down' and int(layer) in [0, 1, 10, 11]):
|
||||
cur_qtype = ggml_tensor_qtype['q2_k']
|
||||
if qtype == ggml_tensor_qtype["gguf_iq1_s"] and cur_module == 'o':
|
||||
cur_qtype = ggml_tensor_qtype['gguf_iq2_xxs']
|
||||
if imatrix_data is not None and new_module_name in imatrix_data:
|
||||
cur_imatrix = imatrix_data[new_module_name]
|
||||
else:
|
||||
|
|
|
|||
Loading…
Reference in a new issue