LLM: support iq1_s (#10564)

* init version

* update utils

* remove unsed code
This commit is contained in:
Ruonan Wang 2024-03-29 09:43:55 +08:00 committed by GitHub
parent f4537798c1
commit 0136fad1d4
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 17 additions and 11 deletions

View file

@ -42,7 +42,9 @@ ggml_tensor_qtype = {"sym_int4": 2, # q4_0 in ggml
"bf16": 20, "bf16": 20,
"gguf_iq2_xxs": 21, "gguf_iq2_xxs": 21,
"gguf_iq2_xs": 22, "gguf_iq2_xs": 22,
"q2_k": 23} "q2_k": 23,
"gguf_iq1_s": 24,
"gguf_iq1_m": 25}
_llama_quantize_type = {"q4_0": 2, _llama_quantize_type = {"q4_0": 2,
"q4_1": 3, "q4_1": 3,

View file

@ -73,7 +73,7 @@ FP8E5 = ggml_tensor_qtype["fp8_e5m2"]
IQ2_XXS = ggml_tensor_qtype["gguf_iq2_xxs"] IQ2_XXS = ggml_tensor_qtype["gguf_iq2_xxs"]
IQ2_XS = ggml_tensor_qtype["gguf_iq2_xs"] IQ2_XS = ggml_tensor_qtype["gguf_iq2_xs"]
Q2_K = ggml_tensor_qtype["q2_k"] Q2_K = ggml_tensor_qtype["q2_k"]
IQ1_S = ggml_tensor_qtype["gguf_iq1_s"]
# The ggml_weight is col major and packs two rows at a stride of Q4_0//2. # The ggml_weight is col major and packs two rows at a stride of Q4_0//2.
# #
@ -156,7 +156,7 @@ def ggml_convert_qtype(tensor: torch.Tensor, qtype: int,
if not convert_shape_only and device != 'meta': if not convert_shape_only and device != 'meta':
dst = ctypes.c_void_p(dst_tensor.data.data_ptr()) dst = ctypes.c_void_p(dst_tensor.data.data_ptr())
hist = (ctypes.c_int64 * 16)() hist = (ctypes.c_int64 * 16)()
if qtype not in [IQ2_XXS, IQ2_XS, Q2_K]: if qtype not in [IQ2_XXS, IQ2_XS, Q2_K, IQ1_S]:
ggml.ggml_quantize_tensor(src, dst, qtype, n, k, hist) ggml.ggml_quantize_tensor(src, dst, qtype, n, k, hist)
else: else:
if imatrix is not None: if imatrix is not None:

View file

@ -118,7 +118,8 @@ class _BaseAutoModelClass:
:param load_in_low_bit: str value, options are ``'sym_int4'``, ``'asym_int4'``, :param load_in_low_bit: str value, options are ``'sym_int4'``, ``'asym_int4'``,
``'sym_int5'``, ``'asym_int5'``, ``'sym_int8'``, ``'nf3'``, ``'sym_int5'``, ``'asym_int5'``, ``'sym_int8'``, ``'nf3'``,
``'nf4'``, ``'fp4'``, ``'fp8'``, ``'fp8_e4m3'``, ``'fp8_e5m2'``, ``'nf4'``, ``'fp4'``, ``'fp8'``, ``'fp8_e4m3'``, ``'fp8_e5m2'``,
``'gguf_iq2_xxs'``, ``'gguf_iq2_xs'``, ``'fp16'`` or ``'bf16'``, ``'gguf_iq2_xxs'``, ``'gguf_iq2_xs'``, gguf_iq1_s'``,
``'fp16'`` or ``'bf16'``,
``'sym_int4'`` means symmetric int 4, ``'asym_int4'`` means ``'sym_int4'`` means symmetric int 4, ``'asym_int4'`` means
asymmetric int 4, ``'nf4'`` means 4-bit NormalFloat, etc. asymmetric int 4, ``'nf4'`` means 4-bit NormalFloat, etc.
Relevant low bit optimizations will be applied to the model. Relevant low bit optimizations will be applied to the model.
@ -304,14 +305,14 @@ class _BaseAutoModelClass:
kwargs["pretraining_tp"] = 1 kwargs["pretraining_tp"] = 1
q_k = load_in_low_bit if load_in_low_bit else "sym_int4" q_k = load_in_low_bit if load_in_low_bit else "sym_int4"
imatrix_file = kwargs.pop("imatrix", None) imatrix_file = kwargs.pop("imatrix", None)
if q_k in ["gguf_iq2_xxs", "gguf_iq2_xs"]: if q_k in ["gguf_iq2_xxs", "gguf_iq2_xs", "gguf_iq1_s"]:
invalidInputError(imatrix_file is not None, invalidInputError(imatrix_file is not None,
"For gguf_iq2_xxs and gguf_iq2_xs quantization," "For gguf_iq2 and gguf_iq1 quantization,"
"imatrix is needed.") "imatrix is needed.")
cpu_embedding = kwargs.get("cpu_embedding", False) cpu_embedding = kwargs.get("cpu_embedding", False)
# for 2bit, default use embedding_quantization # for 2bit, default use embedding_quantization
if q_k in ["gguf_iq2_xxs", "gguf_iq2_xs", "q2_k"] and not cpu_embedding and \ if q_k in ["gguf_iq2_xxs", "gguf_iq2_xs", "gguf_iq1_s", "q2_k"] and \
embedding_qtype is None: not cpu_embedding and embedding_qtype is None:
embedding_qtype = "q2_k" embedding_qtype = "q2_k"
if imatrix_file is not None: if imatrix_file is not None:
imatrix_data = load_imatrix_data(imatrix_file) imatrix_data = load_imatrix_data(imatrix_file)
@ -361,7 +362,7 @@ class _BaseAutoModelClass:
f"Unknown load_in_low_bit value: {q_k}, expected:" f"Unknown load_in_low_bit value: {q_k}, expected:"
f" sym_int4, asym_int4, sym_int5, asym_int5, sym_int8, nf3, nf4, " f" sym_int4, asym_int4, sym_int5, asym_int5, sym_int8, nf3, nf4, "
f"fp4, fp8, fp8_e4m3, fp8_e5m2, fp16, bf16, gguf_iq2_xxs, " f"fp4, fp8, fp8_e4m3, fp8_e5m2, fp16, bf16, gguf_iq2_xxs, "
f"gguf_iq2_xs, mixed_fp4 or mixed_fp8.") f"gguf_iq2_xs, gguf_iq1_s, mixed_fp4 or mixed_fp8.")
qtype = ggml_tensor_qtype[q_k] qtype = ggml_tensor_qtype[q_k]
# In case it needs a second try, # In case it needs a second try,
@ -535,7 +536,7 @@ class _BaseAutoModelClass:
optimize_model = kwargs.pop("optimize_model", True) optimize_model = kwargs.pop("optimize_model", True)
qtype = ggml_tensor_qtype[bigdl_transformers_low_bit] qtype = ggml_tensor_qtype[bigdl_transformers_low_bit]
if bigdl_transformers_low_bit in ["gguf_iq2_xxs", "gguf_iq2_xs", "q2_k"] and \ if bigdl_transformers_low_bit in ["gguf_iq2_xxs", "gguf_iq2_xs", "gguf_iq1_s", "q2_k"] and \
not cpu_embedding: not cpu_embedding:
embedding_qtype = "q2_k" embedding_qtype = "q2_k"
if embedding_qtype is not None: if embedding_qtype is not None:

View file

@ -269,7 +269,8 @@ def module_name_process(full_module_name):
def get_cur_qtype_and_imatrix(qtype, full_module_name, imatrix_data, model_type=None): def get_cur_qtype_and_imatrix(qtype, full_module_name, imatrix_data, model_type=None):
cur_qtype = qtype cur_qtype = qtype
if qtype in [ggml_tensor_qtype["gguf_iq2_xxs"], ggml_tensor_qtype["gguf_iq2_xs"]]: if qtype in [ggml_tensor_qtype["gguf_iq2_xxs"], ggml_tensor_qtype["gguf_iq2_xs"],
ggml_tensor_qtype["gguf_iq1_s"]]:
# For quantization which needs importance matrix # For quantization which needs importance matrix
new_module_name, layer, cur_module = module_name_process(full_module_name) new_module_name, layer, cur_module = module_name_process(full_module_name)
# custom mixed quantization strategy # custom mixed quantization strategy
@ -282,6 +283,8 @@ def get_cur_qtype_and_imatrix(qtype, full_module_name, imatrix_data, model_type=
else: else:
if cur_module == 'v' or (cur_module == 'down' and int(layer) in [0, 1, 10, 11]): if cur_module == 'v' or (cur_module == 'down' and int(layer) in [0, 1, 10, 11]):
cur_qtype = ggml_tensor_qtype['q2_k'] cur_qtype = ggml_tensor_qtype['q2_k']
if qtype == ggml_tensor_qtype["gguf_iq1_s"] and cur_module == 'o':
cur_qtype = ggml_tensor_qtype['gguf_iq2_xxs']
if imatrix_data is not None and new_module_name in imatrix_data: if imatrix_data is not None and new_module_name in imatrix_data:
cur_imatrix = imatrix_data[new_module_name] cur_imatrix = imatrix_data[new_module_name]
else: else: