Update cpp docker quickstart (#11040)
* add sample output * update link * update * update header * update
This commit is contained in:
parent
c62e828281
commit
00d4410746
6 changed files with 67 additions and 21 deletions
|
|
@ -1,4 +1,4 @@
|
|||
## Run llama.cpp/Ollama/open-webui with Docker on Intel GPU
|
||||
## Run llama.cpp/Ollama/Open-WebUI on an Intel GPU via Docker
|
||||
|
||||
### Install Docker
|
||||
|
||||
|
|
@ -11,7 +11,7 @@
|
|||
For Windows installation, refer to this [guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/DockerGuides/docker_windows_gpu.html#install-docker-desktop-for-windows).
|
||||
|
||||
#### Setting Docker on windows
|
||||
If you want to run this image on windows, please refer to (this document)[https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/docker_windows_gpu.html#install-docker-on-windows] to set up Docker on windows. Then run below steps on wls ubuntu. And you need to enable `--net=host`,follow [this guide](https://docs.docker.com/network/drivers/host/#docker-desktop) so that you can easily access the service running on the docker. The [v6.1x kernel version wsl]( https://learn.microsoft.com/en-us/community/content/wsl-user-msft-kernel-v6#1---building-the-microsoft-linux-kernel-v61x) is recommended to use.Otherwise, you may encounter the blocking issue before loading the model to GPU.
|
||||
Need to enable `--net=host`,follow [this guide](https://docs.docker.com/network/drivers/host/#docker-desktop) so that you can easily access the service running on the docker. The [v6.1x kernel version wsl]( https://learn.microsoft.com/en-us/community/content/wsl-user-msft-kernel-v6#1---building-the-microsoft-linux-kernel-v61x) is recommended to use.Otherwise, you may encounter the blocking issue before loading the model to GPU.
|
||||
|
||||
### Pull the latest image
|
||||
```bash
|
||||
|
|
|
|||
|
|
@ -65,9 +65,6 @@
|
|||
<a href="doc/LLM/Quickstart/deepspeed_autotp_fastapi_quickstart.html">Run IPEX-LLM serving on Multiple Intel GPUs
|
||||
using DeepSpeed AutoTP and FastApi</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="doc/LLM/Quickstart/docker_cpp_xpu_quickstart.html">Run llama.cpp/Ollama/open-webui with Docker on Intel GPU</a>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li>
|
||||
|
|
@ -83,6 +80,9 @@
|
|||
<li>
|
||||
<a href="doc/LLM/DockerGuides/docker_pytorch_inference_gpu.html">Run PyTorch Inference on an Intel GPU via Docker</a>
|
||||
</li>
|
||||
<li>
|
||||
<a href="doc/LLM/DockerGuides/docker_cpp_xpu_quickstart.html">Run llama.cpp/Ollama/Open-WebUI on an Intel GPU via Docker</a>
|
||||
</li>
|
||||
</ul>
|
||||
</li>
|
||||
<li>
|
||||
|
|
|
|||
|
|
@ -21,6 +21,7 @@ subtrees:
|
|||
- entries:
|
||||
- file: doc/LLM/DockerGuides/docker_windows_gpu
|
||||
- file: doc/LLM/DockerGuides/docker_pytorch_inference_gpu
|
||||
- file: doc/LLM/DockerGuides/docker_cpp_xpu_quickstart
|
||||
- file: doc/LLM/Quickstart/index
|
||||
title: "Quickstart"
|
||||
subtrees:
|
||||
|
|
@ -41,7 +42,6 @@ subtrees:
|
|||
- file: doc/LLM/Quickstart/fastchat_quickstart
|
||||
- file: doc/LLM/Quickstart/axolotl_quickstart
|
||||
- file: doc/LLM/Quickstart/deepspeed_autotp_fastapi_quickstart
|
||||
- file: doc/LLM/Quickstart/docker_cpp_xpu_quickstart
|
||||
- file: doc/LLM/Overview/KeyFeatures/index
|
||||
title: "Key Features"
|
||||
subtrees:
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
## Run llama.cpp/Ollama/open-webui with Docker on Intel GPU
|
||||
## Run llama.cpp/Ollama/Open-WebUI on an Intel GPU via Docker
|
||||
|
||||
## Quick Start
|
||||
|
||||
|
|
@ -13,7 +13,8 @@
|
|||
For Windows installation, refer to this [guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/DockerGuides/docker_windows_gpu.html#install-docker-desktop-for-windows).
|
||||
|
||||
#### Setting Docker on windows
|
||||
If you want to run this image on windows, please refer to (this document)[https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/docker_windows_gpu.html#install-docker-on-windows] to set up Docker on windows. And run below steps on wls ubuntu. And you need to enable `--net=host`,follow [this guide](https://docs.docker.com/network/drivers/host/#docker-desktop) so that you can easily access the service running on the docker. The [v6.1x kernel version wsl]( https://learn.microsoft.com/en-us/community/content/wsl-user-msft-kernel-v6#1---building-the-microsoft-linux-kernel-v61x) is recommended to use.Otherwise, you may encounter the blocking issue before loading the model to GPU.
|
||||
|
||||
Need to enable `--net=host`,follow [this guide](https://docs.docker.com/network/drivers/host/#docker-desktop) so that you can easily access the service running on the docker. The [v6.1x kernel version wsl]( https://learn.microsoft.com/en-us/community/content/wsl-user-msft-kernel-v6#1---building-the-microsoft-linux-kernel-v61x) is recommended to use.Otherwise, you may encounter the blocking issue before loading the model to GPU.
|
||||
|
||||
### Pull the latest image
|
||||
```bash
|
||||
|
|
@ -95,15 +96,16 @@ Notice that the performance on windows wsl docker is a little slower than on win
|
|||
|
||||
```bash
|
||||
bash /llm/scripts/benchmark_llama-cpp.sh
|
||||
|
||||
# benchmark results
|
||||
llama_print_timings: load time = xxx ms
|
||||
llama_print_timings: sample time = xxx ms / xxx runs ( xxx ms per token, xxx tokens per second)
|
||||
llama_print_timings: prompt eval time = xxx ms / xxx tokens ( xxx ms per token, xxx tokens per second)
|
||||
llama_print_timings: eval time = xxx ms / 128 runs ( xxx ms per token, xxx tokens per second)
|
||||
llama_print_timings: total time = xxx ms / xxx tokens
|
||||
```
|
||||
|
||||
The benchmark will run three times to warm up to get the accurate results, and the example output is like:
|
||||
```bash
|
||||
llama_print_timings: load time = xxx ms
|
||||
llama_print_timings: sample time = xxx ms / 128 runs ( xxx ms per token, xxx tokens per second)
|
||||
llama_print_timings: prompt eval time = xxx ms / xxx tokens ( xxx ms per token, xxx tokens per second)
|
||||
llama_print_timings: eval time = xxx ms / 127 runs ( xxx ms per token, xxx tokens per second)
|
||||
llama_print_timings: total time = xxx ms / xxx tokens
|
||||
```
|
||||
|
||||
### Running llama.cpp inference with IPEX-LLM on Intel GPU
|
||||
|
||||
|
|
@ -115,6 +117,15 @@ source ipex-llm-init --gpu --device $DEVICE
|
|||
bash start-llama-cpp.sh
|
||||
```
|
||||
|
||||
The example output is like:
|
||||
```bash
|
||||
llama_print_timings: load time = xxx ms
|
||||
llama_print_timings: sample time = xxx ms / 32 runs ( xxx ms per token, xxx tokens per second)
|
||||
llama_print_timings: prompt eval time = xxx ms / xxx tokens ( xxx ms per token, xxx tokens per second)
|
||||
llama_print_timings: eval time = xxx ms / 31 runs ( xxx ms per token, xxx tokens per second)
|
||||
llama_print_timings: total time = xxx ms / xxx tokens
|
||||
```
|
||||
|
||||
Please refer to this [documentation](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/llama_cpp_quickstart.html) for more details.
|
||||
|
||||
|
||||
|
|
@ -125,7 +136,18 @@ Running the ollama on the background, you can see the ollama.log in `/root/ollam
|
|||
cd /llm/scripts/
|
||||
# set the recommended Env
|
||||
source ipex-llm-init --gpu --device $DEVICE
|
||||
bash start-ollama.sh # ctrl+c to exit
|
||||
bash start-ollama.sh # ctrl+c to exit, and the ollama serve will run on the background
|
||||
```
|
||||
|
||||
Sample output:
|
||||
```bash
|
||||
time=2024-05-16T10:45:33.536+08:00 level=INFO source=images.go:697 msg="total blobs: 0"
|
||||
time=2024-05-16T10:45:33.536+08:00 level=INFO source=images.go:704 msg="total unused blobs removed: 0"
|
||||
time=2024-05-16T10:45:33.536+08:00 level=INFO source=routes.go:1044 msg="Listening on 127.0.0.1:11434 (version 0.0.0)"
|
||||
time=2024-05-16T10:45:33.537+08:00 level=INFO source=payload.go:30 msg="extracting embedded files" dir=/tmp/ollama751325299/runners
|
||||
time=2024-05-16T10:45:33.565+08:00 level=INFO source=payload.go:44 msg="Dynamic LLM libraries [cpu cpu_avx cpu_avx2]"
|
||||
time=2024-05-16T10:45:33.565+08:00 level=INFO source=gpu.go:122 msg="Detecting GPUs"
|
||||
time=2024-05-16T10:45:33.566+08:00 level=INFO source=cpu_common.go:11 msg="CPU has AVX2"
|
||||
```
|
||||
|
||||
#### Run Ollama models (interactive)
|
||||
|
|
@ -142,6 +164,13 @@ PARAMETER num_predict 64
|
|||
./ollama run example
|
||||
```
|
||||
|
||||
An example process of interacting with model with `ollama run example` looks like the following:
|
||||
|
||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/ollama_gguf_demo_image.png" target="_blank">
|
||||
<img src="https://llm-assets.readthedocs.io/en/latest/_images/ollama_gguf_demo_image.png" width=100%; />
|
||||
</a>
|
||||
|
||||
|
||||
#### Pull models from ollama to serve
|
||||
|
||||
```bash
|
||||
|
|
@ -159,6 +188,12 @@ curl http://localhost:11434/api/generate -d '
|
|||
}'
|
||||
```
|
||||
|
||||
Sample output:
|
||||
```bash
|
||||
{"model":"llama2","created_at":"2024-05-16T02:52:18.972296097Z","response":"\nArtificial intelligence (AI) refers to the development of computer systems that can perform tasks that typically require human intelligence, such as learning, problem-solving, and decision-making. AI systems use algorithms and data to mimic human behavior and perform tasks such as:\n\n1. Image recognition: AI can identify objects in images and classify them into different categories.\n2. Natural Language Processing (NLP): AI can understand and generate human language, allowing it to interact with humans through voice assistants or chatbots.\n3. Predictive analytics: AI can analyze data to make predictions about future events, such as stock prices or weather patterns.\n4. Robotics: AI can control robots that perform tasks such as assembly, maintenance, and logistics.\n5. Recommendation systems: AI can suggest products or services based on a user's past behavior or preferences.\n6. Autonomous vehicles: AI can control self-driving cars that can navigate through roads and traffic without human intervention.\n7. Fraud detection: AI can identify and flag fraudulent transactions, such as credit card purchases or insurance claims.\n8. Personalized medicine: AI can analyze genetic data to provide personalized medical recommendations, such as drug dosages or treatment plans.\n9. Virtual assistants: AI can interact with users through voice or text interfaces, providing information or completing tasks.\n10. Sentiment analysis: AI can analyze text or speech to determine the sentiment or emotional tone of a message.\n\nThese are just a few examples of what AI can do. As the technology continues to evolve, we can expect to see even more innovative applications of AI in various industries and aspects of our lives.","done":true,"context":[xxx,xxx],"total_duration":12831317190,"load_duration":6453932096,"prompt_eval_count":25,"prompt_eval_duration":254970000,"eval_count":390,"eval_duration":6079077000}
|
||||
```
|
||||
|
||||
|
||||
Please refer to this [documentation](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/ollama_quickstart.html#pull-model) for more details.
|
||||
|
||||
|
||||
|
|
@ -169,7 +204,18 @@ If you have difficulty accessing the huggingface repositories, you may use a mir
|
|||
```bash
|
||||
cd /llm/scripts/
|
||||
bash start-open-webui.sh
|
||||
# INFO: Uvicorn running on http://0.0.0.0:8080 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
Sample output:
|
||||
```bash
|
||||
INFO: Started server process [1055]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://0.0.0.0:8080 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
<a href="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_signup.png" target="_blank">
|
||||
<img src="https://llm-assets.readthedocs.io/en/latest/_images/open_webui_signup.png" width="100%" />
|
||||
</a>
|
||||
|
||||
For how to log-in or other guide, Please refer to this [documentation](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/open_webui_with_ollama_quickstart.html) for more details.
|
||||
|
|
@ -6,3 +6,4 @@ In this section, you will find guides related to using IPEX-LLM with Docker, cov
|
|||
|
||||
* `Overview of IPEX-LLM Containers for Intel GPU <./docker_windows_gpu.html>`_
|
||||
* `Run PyTorch Inference on an Intel GPU via Docker <./docker_pytorch_inference_gpu.html>`_
|
||||
* `Run llama.cpp/Ollama/open-webui with Docker on Intel GPU <./docker_cpp_xpu_quickstart.html>`_
|
||||
|
|
@ -25,8 +25,7 @@ This section includes efficient guide to show you how to:
|
|||
* `Run Llama 3 on Intel GPU using llama.cpp and ollama with IPEX-LLM <./llama3_llamacpp_ollama_quickstart.html>`_
|
||||
* `Run IPEX-LLM Serving with FastChat <./fastchat_quickstart.html>`_
|
||||
* `Finetune LLM with Axolotl on Intel GPU <./axolotl_quickstart.html>`_
|
||||
* `Run IPEX-LLM serving on Multiple Intel GPUs using DeepSpeed AutoTP and FastApi <./deepspeed_autotp_fastapi_quickstart.html>`
|
||||
* `Run llama.cpp/Ollama/open-webui with Docker on Intel GPU <./docker_cpp_xpu_quickstart.html>`
|
||||
* `Run IPEX-LLM serving on Multiple Intel GPUs using DeepSpeed AutoTP and FastApi <./deepspeed_autotp_fastapi_quickstart.html>`_
|
||||
|
||||
|
||||
.. |bigdl_llm_migration_guide| replace:: ``bigdl-llm`` Migration Guide
|
||||
|
|
|
|||
Loading…
Reference in a new issue