Merge branch 'yangw1234-ray_ctx' into ray_ctx_update
This commit is contained in:
commit
00aa8640dd
8 changed files with 263 additions and 106 deletions
18
docs/readthedocs/source/doc/Chronos/Overview/deep_dive.rst
Normal file
18
docs/readthedocs/source/doc/Chronos/Overview/deep_dive.rst
Normal file
|
|
@ -0,0 +1,18 @@
|
||||||
|
Chronos Deep Dive
|
||||||
|
=========
|
||||||
|
|
||||||
|
* `Time Series Processing and Feature Engineering <data_processing_feature_engineering.html>`__ introduces how to load a built-in/customized dataset and carry out transformation and feature engineering on it.
|
||||||
|
* `Time Series Forecasting <forecasting.html>`__ introduces how to build a time series forecasting application.
|
||||||
|
* `Time Series Anomaly Detection <anomaly_detection.html>`__ introduces how to build a anomaly detection application.
|
||||||
|
* `Generate Synthetic Sequential Data <simulation.html>`__ introduces how to build a series data generation application.
|
||||||
|
* `Useful Functionalities <useful_functionalities.html>`__ introduces some functionalities provided by Chronos that can help you improve accuracy/performance or scale the application to a larger data.
|
||||||
|
|
||||||
|
.. toctree::
|
||||||
|
:maxdepth: 1
|
||||||
|
:hidden:
|
||||||
|
|
||||||
|
data_processing_feature_engineering.md
|
||||||
|
forecasting.md
|
||||||
|
anomaly_detection.md
|
||||||
|
simulation.md
|
||||||
|
useful_functionalities.md
|
||||||
|
|
@ -1,4 +1,4 @@
|
||||||
# Anomaly Detector Quickstart
|
# Detect Anomaly Point in Real Time Traffic Data
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -1,4 +1,4 @@
|
||||||
# AutoTSEstimator Quickstart
|
# Tune a Forecasting Task Automatically
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -1,4 +1,4 @@
|
||||||
# TSDataset and Forecaster Quickstarts
|
# Predict Number of Taxi Passengers with Chronos Forecaster
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
|
|
|
||||||
98
docs/readthedocs/source/doc/Chronos/QuickStart/index.md
Normal file
98
docs/readthedocs/source/doc/Chronos/QuickStart/index.md
Normal file
|
|
@ -0,0 +1,98 @@
|
||||||
|
# Chronos Tutorial
|
||||||
|
|
||||||
|
- [**Predict Number of Taxi Passengers with Chronos Forecaster**](./chronos-tsdataset-forecaster-quickstart.html)
|
||||||
|
|
||||||
|
> [Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/branch-2.0/python/chronos/colab-notebook/chronos_nyc_taxi_tsdataset_forecaster.ipynb) [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/chronos/colab-notebook/chronos_nyc_taxi_tsdataset_forecaster.ipynb)
|
||||||
|
|
||||||
|
In this guide we will demonstrate how to use _Chronos TSDataset_ and _Chronos Forecaster_ for time series processing and predict number of taxi passengers.
|
||||||
|
|
||||||
|
---------------------------
|
||||||
|
|
||||||
|
- [**Tune a Forecasting Task Automatically**](./chronos-autotsest-quickstart.html)
|
||||||
|
|
||||||
|
> [Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/branch-2.0/python/chronos/colab-notebook/chronos_autots_nyc_taxi.ipynb) [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/chronos/colab-notebook/chronos_autots_nyc_taxi.ipynb)
|
||||||
|
|
||||||
|
In this guide we will demonstrate how to use _Chronos AutoTSEstimator_ and _Chronos TSPipeline_ to auto tune a time seires forecasting task and handle the whole model development process easily.
|
||||||
|
|
||||||
|
---------------------------
|
||||||
|
|
||||||
|
- [**Detect Anomaly Point in Real Time Traffic Data**](./chronos-anomaly-detector.html)
|
||||||
|
|
||||||
|
> [Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/branch-2.0/python/chronos/colab-notebook/chronos_minn_traffic_anomaly_detector.ipynb) [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/chronos/colab-notebook/chronos_minn_traffic_anomaly_detector.ipynb)
|
||||||
|
|
||||||
|
In this guide we will demonstrate how to use _Chronos Anomaly Detector_ for real time traffic data from the Twin Cities Metro area in Minnesota anomaly detection.
|
||||||
|
|
||||||
|
---------------------------
|
||||||
|
|
||||||
|
- [**Tune a Customized Time Series Forecasting Model with AutoTSEstimator.**](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/chronos/use-case/network_traffic/network_traffic_autots_customized_model.ipynb)
|
||||||
|
|
||||||
|
> [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/chronos/use-case/network_traffic/network_traffic_autots_customized_model.ipynb)
|
||||||
|
|
||||||
|
In this notebook, we demonstrate a reference use case where we use the network traffic KPI(s) in the past to predict traffic KPI(s) in the future. We demonstrate how to use _AutoTSEstimator_ to adjust the parameters of a customized model.
|
||||||
|
|
||||||
|
---------------------------
|
||||||
|
|
||||||
|
- [**Auto Tune the Prediction of Network Traffic at the Transit Link of WIDE**](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/chronos/use-case/network_traffic/network_traffic_autots_forecasting.ipynb)
|
||||||
|
|
||||||
|
> [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/chronos/use-case/network_traffic/network_traffic_autots_forecasting.ipynb)
|
||||||
|
|
||||||
|
In this notebook, we demostrate a reference use case where we use the network traffic KPI(s) in the past to predict traffic KPI(s) in the future. We demostrate how to use _AutoTS_ in project [Chronos][4] to do time series forecasting in an automated and distributed way.
|
||||||
|
|
||||||
|
---------------------------
|
||||||
|
|
||||||
|
- [**Multivariate Forecasting of Network Traffic at the Transit Link of WIDE**](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/chronos/use-case/network_traffic/network_traffic_model_forecasting.ipynb)
|
||||||
|
|
||||||
|
> [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/chronos/use-case/network_traffic/network_traffic_model_forecasting.ipynb)
|
||||||
|
|
||||||
|
In this notebook, we demonstrate a reference use case where we use the network traffic KPI(s) in the past to predict traffic KPI(s) in the future. We demostrate how to do univariate forecasting (predict only 1 series), and multivariate forecasting (predicts more than 1 series at the same time) using Project [Chronos][4].
|
||||||
|
|
||||||
|
---------------------------
|
||||||
|
|
||||||
|
- [**Multistep Forecasting of Network Traffic at the Transit Link of WIDE**](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/chronos/use-case/network_traffic/network_traffic_multivariate_multistep_tcnforecaster.ipynb)
|
||||||
|
|
||||||
|
> [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/chronos/use-case/network_traffic/network_traffic_multivariate_multistep_tcnforecaster.ipynb)
|
||||||
|
|
||||||
|
In this notebook, we demonstrate a reference use case where we use the network traffic KPI(s) in the past to predict traffic KPI(s) in the future. We demostrate how to do multivariate multistep forecasting using Project [Chronos][4].
|
||||||
|
|
||||||
|
---------------------------
|
||||||
|
|
||||||
|
- [**Stock Price Prediction with LSTMForecaster**](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/chronos/use-case/fsi/stock_prediction.ipynb)
|
||||||
|
|
||||||
|
> [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/chronos/use-case/fsi/stock_prediction.ipynb)
|
||||||
|
|
||||||
|
In this notebook, we demonstrate a reference use case where we use historical stock price data to predict the future price. The dataset we use is the daily stock price of S&P500 stocks during 2013-2018 (data source). We demostrate how to do univariate forecasting using the past 80% of the total days' MMM price to predict the future 20% days' daily price.
|
||||||
|
|
||||||
|
Reference: *<https://github.com/jwkanggist/tf-keras-stock-pred>*
|
||||||
|
|
||||||
|
---------------------------
|
||||||
|
|
||||||
|
- [**Stock Price Prediction with ProphetForecaster and AutoProphet**](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/chronos/use-case/fsi/stock_prediction_prophet.ipynb)
|
||||||
|
|
||||||
|
> [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/chronos/use-case/fsi/stock_prediction_prophet.ipynb)
|
||||||
|
|
||||||
|
In this notebook, we demonstrate a reference use case where we use historical stock price data to predict the future price using the ProphetForecaster and AutoProphet. The dataset we use is the daily stock price of S&P500 stocks during 2013-2018 [data source](https://www.kaggle.com/camnugent/sandp500/).
|
||||||
|
|
||||||
|
Reference: *<https://facebook.github.io/prophet>*, *<https://github.com/jwkanggist/tf-keras-stock-pred>*
|
||||||
|
|
||||||
|
---------------------------
|
||||||
|
|
||||||
|
- [**Unsupervised Anomaly Detection for CPU Usage**](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/chronos/use-case/AIOps/AIOps_anomaly_detect_unsupervised.ipynb)
|
||||||
|
|
||||||
|
> [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/chronos/use-case/AIOps/AIOps_anomaly_detect_unsupervised.ipynb)
|
||||||
|
|
||||||
|
We demonstrates how to perform anomaly detection based on Chronos's built-in [DBScanDetector][DBScan], [AEDetector][AE] and [ThresholdDetector][Threshold].
|
||||||
|
|
||||||
|
---------------------------
|
||||||
|
|
||||||
|
- [**Anomaly Detection for CPU Usage Based on Forecasters**](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/chronos/use-case/AIOps/AIOps_anomaly_detect_unsupervised_forecast_based.ipynb)
|
||||||
|
|
||||||
|
> [View source on GitHub](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/chronos/use-case/AIOps/AIOps_anomaly_detect_unsupervised_forecast_based.ipynb)
|
||||||
|
|
||||||
|
We demonstrates how to leverage Chronos's built-in models ie. MTNet, to do time series forecasting. Then perform anomaly detection on predicted value with [ThresholdDetector][Threshold].
|
||||||
|
|
||||||
|
|
||||||
|
[DBScan]: <https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/Chronos/anomaly_detectors.html#dbscandetector>
|
||||||
|
[AE]: <https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/Chronos/anomaly_detectors.html#aedetector>
|
||||||
|
[Threshold]: <https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/Chronos/anomaly_detectors.html#thresholddetector>
|
||||||
|
[4]: <https://github.com/intel-analytics/bigdl/tree/branch-2.0/python/chronos/src/bigdl/chronos>
|
||||||
|
|
||||||
|
|
@ -6,9 +6,9 @@
|
||||||
To define a model in Scala using the Keras-like API, one just needs to import the following packages:
|
To define a model in Scala using the Keras-like API, one just needs to import the following packages:
|
||||||
|
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers._
|
import com.intel.analytics.bigdl.dllib.keras.layers._
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models._
|
import com.intel.analytics.bigdl.dllib.keras.models._
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
```
|
```
|
||||||
|
|
||||||
One of the highlighted features with regard to the new API is __shape inference__. Users only need to specify the input shape (a `Shape` object __excluding__ batch dimension, for example, `inputShape=Shape(3, 4)` for 3D input) for the first layer of a model and for the remaining layers, the input dimension will be automatically inferred.
|
One of the highlighted features with regard to the new API is __shape inference__. Users only need to specify the input shape (a `Shape` object __excluding__ batch dimension, for example, `inputShape=Shape(3, 4)` for 3D input) for the first layer of a model and for the remaining layers, the input dimension will be automatically inferred.
|
||||||
|
|
@ -19,9 +19,9 @@ Here we use the Keras-like API to define a LeNet CNN model and train it on the M
|
||||||
|
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.bigdl.numeric.NumericFloat
|
import com.intel.analytics.bigdl.numeric.NumericFloat
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers._
|
import com.intel.analytics.bigdl.dllib.keras.layers._
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models._
|
import com.intel.analytics.bigdl.dllib.keras.models._
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
|
|
||||||
val model = Sequential()
|
val model = Sequential()
|
||||||
model.add(Reshape(Array(1, 28, 28), inputShape = Shape(28, 28, 1)))
|
model.add(Reshape(Array(1, 28, 28), inputShape = Shape(28, 28, 1)))
|
||||||
|
|
@ -81,9 +81,9 @@ Sequential()
|
||||||
|
|
||||||
Example code to create a sequential model:
|
Example code to create a sequential model:
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.{Dense, Activation}
|
import com.intel.analytics.bigdl.dllib.keras.layers.{Dense, Activation}
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
model.add(Dense[Float](32, inputShape = Shape(128)))
|
model.add(Dense[Float](32, inputShape = Shape(128)))
|
||||||
|
|
@ -114,7 +114,7 @@ Parameters:
|
||||||
|
|
||||||
To merge a list of input __nodes__ (__NOT__ layers), following some merge mode in the Functional API:
|
To merge a list of input __nodes__ (__NOT__ layers), following some merge mode in the Functional API:
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.Merge.merge
|
import com.intel.analytics.bigdl.dllib.keras.layers.Merge.merge
|
||||||
|
|
||||||
merge(inputs, mode = "sum", concatAxis = -1) // This will return an output NODE.
|
merge(inputs, mode = "sum", concatAxis = -1) // This will return an output NODE.
|
||||||
```
|
```
|
||||||
|
|
@ -127,10 +127,10 @@ Parameters:
|
||||||
|
|
||||||
Example code to create a graph model:
|
Example code to create a graph model:
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.{Dense, Input}
|
import com.intel.analytics.bigdl.dllib.keras.layers.{Dense, Input}
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.Merge.merge
|
import com.intel.analytics.bigdl.dllib.keras.layers.Merge.merge
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Model
|
import com.intel.analytics.bigdl.dllib.keras.models.Model
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
|
|
||||||
// instantiate input nodes
|
// instantiate input nodes
|
||||||
val input1 = Input[Float](inputShape = Shape(8))
|
val input1 = Input[Float](inputShape = Shape(8))
|
||||||
|
|
@ -169,9 +169,9 @@ Masking(mask_value=0.0, input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.Masking
|
import com.intel.analytics.bigdl.dllib.keras.layers.Masking
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -252,8 +252,8 @@ SparseDense(output_dim, init="glorot_uniform", activation=None, W_regularizer=No
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.SparseDense
|
import com.intel.analytics.bigdl.dllib.keras.layers.SparseDense
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val layer = SparseDense[Float](outputDim = 5, inputShape = Shape(2, 4))
|
val layer = SparseDense[Float](outputDim = 5, inputShape = Shape(2, 4))
|
||||||
|
|
@ -340,9 +340,9 @@ SoftShrink(value = 0.5, input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.SoftShrink
|
import com.intel.analytics.bigdl.dllib.keras.layers.SoftShrink
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -474,9 +474,9 @@ Reshape(target_shape, input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.Reshape
|
import com.intel.analytics.bigdl.dllib.keras.layers.Reshape
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -587,9 +587,9 @@ Merge(layers=None, mode="sum", concat_axis=-1, input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.InputLayer
|
import com.intel.analytics.bigdl.dllib.keras.layers.InputLayer
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.Merge
|
import com.intel.analytics.bigdl.dllib.keras.layers.Merge
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.bigdl.utils.{Shape, T}
|
import com.intel.analytics.bigdl.utils.{Shape, T}
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
|
|
@ -711,9 +711,9 @@ MaxoutDense(output_dim, nb_feature=4, W_regularizer=None, b_regularizer=None, bi
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.MaxoutDense
|
import com.intel.analytics.bigdl.dllib.keras.layers.MaxoutDense
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -784,9 +784,9 @@ Squeeze(dim=None, input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.Squeeze
|
import com.intel.analytics.bigdl.dllib.keras.layers.Squeeze
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -865,9 +865,9 @@ BinaryThreshold(value=1e-6, input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.BinaryThreshold
|
import com.intel.analytics.bigdl.dllib.keras.layers.BinaryThreshold
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -995,9 +995,9 @@ Sqrt(input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.Sqrt
|
import com.intel.analytics.bigdl.dllib.keras.layers.Sqrt
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -1063,9 +1063,9 @@ Mul(input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.Mul
|
import com.intel.analytics.bigdl.dllib.keras.layers.Mul
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -1156,9 +1156,9 @@ MulConstant(constant, input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.MulConstant
|
import com.intel.analytics.bigdl.dllib.keras.layers.MulConstant
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -1253,9 +1253,9 @@ Scale(size, input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.Scale
|
import com.intel.analytics.bigdl.dllib.keras.layers.Scale
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -1320,9 +1320,9 @@ Log(input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.Log
|
import com.intel.analytics.bigdl.dllib.keras.layers.Log
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -1422,9 +1422,9 @@ Identity(input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.Identity
|
import com.intel.analytics.bigdl.dllib.keras.layers.Identity
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -1557,8 +1557,8 @@ Select(dim, index, input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.Select
|
import com.intel.analytics.bigdl.dllib.keras.layers.Select
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -1634,9 +1634,9 @@ Dense(output_dim, init="glorot_uniform", activation=None, W_regularizer=None, b_
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.Dense
|
import com.intel.analytics.bigdl.dllib.keras.layers.Dense
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -1701,9 +1701,9 @@ Negative(input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.Negative
|
import com.intel.analytics.bigdl.dllib.keras.layers.Negative
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -1789,9 +1789,9 @@ CAdd(size, b_regularizer=None, input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.CAdd
|
import com.intel.analytics.bigdl.dllib.keras.layers.CAdd
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -1872,9 +1872,9 @@ RepeatVector(n, input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.RepeatVector
|
import com.intel.analytics.bigdl.dllib.keras.layers.RepeatVector
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -1954,8 +1954,8 @@ GaussianSampler(input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.GaussianSampler
|
import com.intel.analytics.bigdl.dllib.keras.layers.GaussianSampler
|
||||||
import com.intel.analytics.bigdl.utils.{Shape, MultiShape, T}
|
import com.intel.analytics.bigdl.utils.{Shape, MultiShape, T}
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
|
|
@ -2054,9 +2054,9 @@ Exp(input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.Exp
|
import com.intel.analytics.bigdl.dllib.keras.layers.Exp
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -2186,9 +2186,9 @@ Square(input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.Square
|
import com.intel.analytics.bigdl.dllib.keras.layers.Square
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -2320,9 +2320,9 @@ Power(power, scale=1, shift=0, input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.Power
|
import com.intel.analytics.bigdl.dllib.keras.layers.Power
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -2404,9 +2404,9 @@ AddConstant(constant, input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.AddConstant
|
import com.intel.analytics.bigdl.dllib.keras.layers.AddConstant
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -2509,9 +2509,9 @@ Narrow(dim, offset, length=1, input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.Narrow
|
import com.intel.analytics.bigdl.dllib.keras.layers.Narrow
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -2622,9 +2622,9 @@ Permute(dims, input_shape=None, name=None)
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.Permute
|
import com.intel.analytics.bigdl.dllib.keras.layers.Permute
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential[Float]()
|
val model = Sequential[Float]()
|
||||||
|
|
@ -2729,9 +2729,9 @@ ResizeBilinear(output_height, output_width, align_corner=False, dim_ordering="th
|
||||||
|
|
||||||
**Scala example:**
|
**Scala example:**
|
||||||
```scala
|
```scala
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.models.Sequential
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
import com.intel.analytics.zoo.pipeline.api.keras.layers.ResizeBilinear
|
import com.intel.analytics.bigdl.dllib.keras.layers.ResizeBilinear
|
||||||
import com.intel.analytics.bigdl.utils.Shape
|
import com.intel.analytics.bigdl.dllib.utils.Shape
|
||||||
import com.intel.analytics.bigdl.tensor.Tensor
|
import com.intel.analytics.bigdl.tensor.Tensor
|
||||||
|
|
||||||
val model = Sequential()
|
val model = Sequential()
|
||||||
|
|
@ -2831,3 +2831,45 @@ array([[[[0.43790358, 0.61913717, 0.2543214 ],
|
||||||
[[0.12074634, 0.6571231 , 0.752728 ],
|
[[0.12074634, 0.6571231 , 0.752728 ],
|
||||||
[0.86969995, 0.6700518 , 0.36353552]]]], dtype=float32)
|
[0.86969995, 0.6700518 , 0.36353552]]]], dtype=float32)
|
||||||
```
|
```
|
||||||
|
---
|
||||||
|
## 8. Persistence
|
||||||
|
This section describes how to save and load the Keras-like API.
|
||||||
|
|
||||||
|
### 8.1 save
|
||||||
|
To save a Keras model, you call the method `saveModel(path)`.
|
||||||
|
|
||||||
|
**Scala:**
|
||||||
|
```scala
|
||||||
|
import com.intel.analytics.bigdl.dllib.keras.layers.{Dense, Activation}
|
||||||
|
import com.intel.analytics.bigdl.dllib.keras.models.Sequential
|
||||||
|
|
||||||
|
val model = Sequential[Float]()
|
||||||
|
model.add(Dense[Float](32, inputShape = Shape(128)))
|
||||||
|
model.add(Activation[Float]("relu"))
|
||||||
|
model.saveModel("/tmp/seq.model")
|
||||||
|
```
|
||||||
|
**Python:**
|
||||||
|
```python
|
||||||
|
import bigdl.dllib.keras.Sequential
|
||||||
|
from bigdl.dllib.keras.layer import Dense
|
||||||
|
|
||||||
|
model = Sequential()
|
||||||
|
model.add(Dense(input_shape=(32, )))
|
||||||
|
model.saveModel("/tmp/seq.model")
|
||||||
|
```
|
||||||
|
|
||||||
|
### 8.2 load
|
||||||
|
To load a saved Keras model, you call the method `load_model(path)`.
|
||||||
|
|
||||||
|
**Scala:**
|
||||||
|
```scala
|
||||||
|
import com.intel.analytics.bigdl.dllib.keras.Models
|
||||||
|
|
||||||
|
val model = Models.loadModel[Float]("/tmp/seq.model")
|
||||||
|
```
|
||||||
|
|
||||||
|
**Python:**
|
||||||
|
```python
|
||||||
|
from bigdl.dllib.keras.models
|
||||||
|
model = load_model("/tmp/seq.model")
|
||||||
|
```
|
||||||
|
|
|
||||||
|
|
@ -1,13 +1,18 @@
|
||||||
# Cluster Serving Example
|
# Cluster Serving Example
|
||||||
|
|
||||||
There are some examples provided for new user or existing Tensorflow user.
|
There are some examples provided for new user or existing Tensorflow user.
|
||||||
|
## Quick Start Example
|
||||||
|
Following is the recommended quick start example to transfer a local Keras application to Cluster Serving.
|
||||||
|
|
||||||
|
[keras-to-cluster-serving-example](https://github.com/intel-analytics/BigDL/blob/branch-2.0/docs/readthedocs/source/doc/Serving/Example/keras-to-cluster-serving-example.ipynb)
|
||||||
|
|
||||||
## End-to-end Example
|
## End-to-end Example
|
||||||
### TFDataSet:
|
### TFDataSet:
|
||||||
[l08c08_forecasting_with_lstm.py](https://github.com/intel-analytics/bigdl/tree/master/docs/docs/ClusterServingGuide/OtherFrameworkUsers/l08c08_forecasting_with_lstm.py)
|
[l08c08_forecasting_with_lstm.py](https://github.com/intel-analytics/bigdl/blob/branch-2.0/docs/docs/ClusterServingGuide/OtherFrameworkUsers/l08c08_forecasting_with_lstm.py)
|
||||||
### Tokenizer:
|
### Tokenizer:
|
||||||
[l10c03_nlp_constructing_text_generation_model.py](https://github.com/intel-analytics/bigdl/tree/master/docs/docs/ClusterServingGuide/OtherFrameworkUsers/l10c03_nlp_constructing_text_generation_model.py)
|
[l10c03_nlp_constructing_text_generation_model.py](https://github.com/intel-analytics/bigdl/tree/master/blob/branch-2.0/ClusterServingGuide/OtherFrameworkUsers/l10c03_nlp_constructing_text_generation_model.py)
|
||||||
### ImageDataGenerator:
|
### ImageDataGenerator:
|
||||||
[transfer_learning.py](https://github.com/intel-analytics/bigdl/tree/master/docs/docs/ClusterServingGuide/OtherFrameworkUsers/transfer_learning.py)
|
[transfer_learning.py](https://github.com/intel-analytics/bigdl/blob/branch-2.0/docs/docs/ClusterServingGuide/OtherFrameworkUsers/transfer_learning.py)
|
||||||
|
|
||||||
## Model/Data Convert Guide
|
## Model/Data Convert Guide
|
||||||
This guide is for users who:
|
This guide is for users who:
|
||||||
|
|
|
||||||
|
|
@ -65,14 +65,8 @@ BigDL Documentation
|
||||||
:caption: Chronos Overview
|
:caption: Chronos Overview
|
||||||
|
|
||||||
doc/Chronos/Overview/chronos.md
|
doc/Chronos/Overview/chronos.md
|
||||||
doc/Chronos/Overview/data_processing_feature_engineering.md
|
doc/Chronos/Overview/deep_dive.rst
|
||||||
doc/Chronos/Overview/forecasting.md
|
doc/Chronos/QuickStart/index.md
|
||||||
doc/Chronos/Overview/anomaly_detection.md
|
|
||||||
doc/Chronos/Overview/simulation.md
|
|
||||||
doc/Chronos/Overview/useful_functionalities.md
|
|
||||||
doc/Chronos/QuickStart/chronos-autotsest-quickstart.md
|
|
||||||
doc/Chronos/QuickStart/chronos-tsdataset-forecaster-quickstart.md
|
|
||||||
doc/Chronos/QuickStart/chronos-anomaly-detector.md
|
|
||||||
|
|
||||||
.. toctree::
|
.. toctree::
|
||||||
:maxdepth: 1
|
:maxdepth: 1
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue