LLM: Support optimized kv_cache for baichuan family (#8997)
* add initial support for baichuan attantion * support baichuan1 * update based on comment * update based on comment * support baichuan2 * update link, change how to jusge baichuan2 * fix style * add model parameter for pob emb * update based on comment
This commit is contained in:
parent
37bb0cbf8f
commit
004c45c2be
7 changed files with 317 additions and 25 deletions
|
|
@ -173,4 +173,24 @@ def optimize(model):
|
|||
chatglm_attention_forward
|
||||
)
|
||||
|
||||
elif model.config.model_type == "baichuan" and model.config.vocab_size == 125696:
|
||||
# baichuan2
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
from bigdl.llm.transformers.models.baichuan2 import baichuan_attention_forward
|
||||
convert_forward(model,
|
||||
module.Attention,
|
||||
baichuan_attention_forward
|
||||
)
|
||||
|
||||
elif model.config.model_type == "baichuan":
|
||||
# baichuan1
|
||||
modeling_module_name = model.__class__.__module__
|
||||
module = importlib.import_module(modeling_module_name)
|
||||
from bigdl.llm.transformers.models.baichuan import baichuan_attention_forward
|
||||
convert_forward(model,
|
||||
module.Attention,
|
||||
baichuan_attention_forward
|
||||
)
|
||||
|
||||
return model
|
||||
|
|
|
|||
135
python/llm/src/bigdl/llm/transformers/models/baichuan.py
Normal file
135
python/llm/src/bigdl/llm/transformers/models/baichuan.py
Normal file
|
|
@ -0,0 +1,135 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This file is adapted from
|
||||
# https://huggingface.co/baichuan-inc/Baichuan-7B/blob/c1a5c7d5b7f50ecc51bb0e08150a9f12e5656756/modeling_baichuan.py
|
||||
|
||||
|
||||
import math
|
||||
from typing import List, Optional, Tuple, Union
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||
from bigdl.llm.utils.common import invalidInputError
|
||||
from bigdl.llm.transformers.models.utils import create_kv_cache, append_kv_cache
|
||||
from bigdl.llm.transformers.models.utils import rotate_half, apply_rotary_pos_emb
|
||||
|
||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
||||
|
||||
|
||||
def baichuan_attention_forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
device = hidden_states.device
|
||||
|
||||
proj = self.W_pack(hidden_states)
|
||||
proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
|
||||
# batch_size x source_len x hidden_size
|
||||
query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
# batch_size x target_len x head_size
|
||||
key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
# batch_size x source_len x hidden_size
|
||||
value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[-2]
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
cos, sin, position_ids, "baichuan")
|
||||
# [bsz, nh, t, hd]
|
||||
|
||||
# if past_key_value is not None:
|
||||
# # reuse k, v, self_attention
|
||||
# key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||||
# value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||||
if past_key_value is not None:
|
||||
# reuse k, v, self_attention
|
||||
cache_k = past_key_value[0]
|
||||
cache_v = past_key_value[1]
|
||||
if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
|
||||
# allocate new
|
||||
new_cache_k, new_cache_v = create_kv_cache(bsz,
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
cache_k.size(2),
|
||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||
dtype=cache_k.dtype,
|
||||
device=device)
|
||||
new_cache_k[:] = cache_k
|
||||
new_cache_v[:] = cache_v
|
||||
cache_k = new_cache_k
|
||||
cache_v = new_cache_v
|
||||
|
||||
key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
|
||||
|
||||
elif use_cache:
|
||||
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
|
||||
new_key_states, new_value_states = create_kv_cache(bsz,
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
kv_seq_len,
|
||||
max_cache_length,
|
||||
dtype=key_states.dtype,
|
||||
device=device)
|
||||
new_key_states[:] = key_states
|
||||
new_value_states[:] = value_states
|
||||
key_states = new_key_states
|
||||
value_states = new_value_states
|
||||
|
||||
past_key_value = (key_states, value_states) if use_cache else None
|
||||
|
||||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||
invalidInputError(False,
|
||||
f"Attention weights should be of size "
|
||||
f"{(bsz, self.num_heads, q_len, kv_seq_len)}"
|
||||
f", but is {attn_weights.size()}")
|
||||
|
||||
if attention_mask is not None:
|
||||
invalidInputError(attention_mask.size() == (bsz, 1, q_len, kv_seq_len),
|
||||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, "
|
||||
f"but is {attention_mask.size()}")
|
||||
attn_weights = attn_weights + attention_mask
|
||||
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
|
||||
dtype=torch.float32).to(query_states.dtype)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
|
||||
invalidInputError(attn_output.size() == (bsz, self.num_heads, q_len, self.head_dim),
|
||||
f"`attn_output` should be of size "
|
||||
f"{(bsz, self.num_heads, q_len, self.head_dim)},"
|
||||
f"but is {attn_output.size()}")
|
||||
|
||||
attn_output = attn_output.transpose(1, 2)
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
135
python/llm/src/bigdl/llm/transformers/models/baichuan2.py
Normal file
135
python/llm/src/bigdl/llm/transformers/models/baichuan2.py
Normal file
|
|
@ -0,0 +1,135 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This file is adapted from
|
||||
# https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/cb7fc748b78b7ea99772e4cf76db155729ce774e/modeling_baichuan.py
|
||||
|
||||
|
||||
import math
|
||||
from typing import List, Optional, Tuple, Union
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||
from bigdl.llm.utils.common import invalidInputError
|
||||
from bigdl.llm.transformers.models.utils import create_kv_cache, append_kv_cache
|
||||
from bigdl.llm.transformers.models.utils import rotate_half, apply_rotary_pos_emb
|
||||
from transformers.utils import logging, ContextManagers
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
try:
|
||||
from xformers import ops as xops
|
||||
except ImportError:
|
||||
xops = None
|
||||
logger.warning(
|
||||
"Xformers is not installed correctly. If you want to use memory_efficient_attention to "
|
||||
"accelerate training use the following command to install Xformers\npip install xformers."
|
||||
)
|
||||
|
||||
|
||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
||||
|
||||
|
||||
def baichuan_attention_forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
device = hidden_states.device
|
||||
|
||||
proj = self.W_pack(hidden_states)
|
||||
proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
|
||||
# batch_size x source_len x hidden_size
|
||||
query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
# batch_size x target_len x head_size
|
||||
key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
# batch_size x source_len x hidden_size
|
||||
value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[-2]
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
cos, sin, position_ids, "baichuan")
|
||||
# [bsz, nh, t, hd]
|
||||
|
||||
# if past_key_value is not None:
|
||||
# # reuse k, v, self_attention
|
||||
# key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||||
# value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||||
if past_key_value is not None:
|
||||
# reuse k, v, self_attention
|
||||
cache_k = past_key_value[0]
|
||||
cache_v = past_key_value[1]
|
||||
if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
|
||||
# allocate new
|
||||
new_cache_k, new_cache_v = create_kv_cache(bsz,
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
cache_k.size(2),
|
||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||
dtype=cache_k.dtype,
|
||||
device=device)
|
||||
new_cache_k[:] = cache_k
|
||||
new_cache_v[:] = cache_v
|
||||
cache_k = new_cache_k
|
||||
cache_v = new_cache_v
|
||||
|
||||
key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
|
||||
|
||||
elif use_cache:
|
||||
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
|
||||
new_key_states, new_value_states = create_kv_cache(bsz,
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
kv_seq_len,
|
||||
max_cache_length,
|
||||
dtype=key_states.dtype,
|
||||
device=device)
|
||||
new_key_states[:] = key_states
|
||||
new_value_states[:] = value_states
|
||||
key_states = new_key_states
|
||||
value_states = new_value_states
|
||||
|
||||
past_key_value = (key_states, value_states) if use_cache else None
|
||||
|
||||
if xops is not None and self.training:
|
||||
attn_weights = None
|
||||
query_states = query_states.transpose(1, 2)
|
||||
key_states = key_states.transpose(1, 2)
|
||||
value_states = value_states.transpose(1, 2)
|
||||
attn_output = xops.memory_efficient_attention(
|
||||
query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask()
|
||||
)
|
||||
else:
|
||||
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True,
|
||||
enable_mem_efficient=True):
|
||||
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states,
|
||||
attn_mask=attention_mask)
|
||||
attn_output = attn_output.transpose(1, 2)
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
|
|
@ -67,8 +67,6 @@ def attention_fn(
|
|||
cache_v = cache_v.permute(1, 2, 0, 3)
|
||||
past_length = cache_k.size(2)
|
||||
if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
|
||||
if device.type == 'xpu':
|
||||
torch.xpu.empty_cache()
|
||||
max_cache_length = past_length + cur_length + KV_CACHE_ALLOC_BLOCK_LENGTH
|
||||
new_cache_k, new_cache_v = create_kv_cache(batch_size,
|
||||
self.num_attention_heads_per_partition,
|
||||
|
|
|
|||
|
|
@ -151,8 +151,6 @@ def chatglm2_attention_forward_8eb45c(
|
|||
past_length = cache_k.size(2)
|
||||
|
||||
if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
|
||||
if device.type == 'xpu':
|
||||
torch.xpu.empty_cache()
|
||||
max_cache_length = past_length + cur_length + KV_CACHE_ALLOC_BLOCK_LENGTH
|
||||
new_cache_k, new_cache_v = create_kv_cache(batch_size,
|
||||
self.num_attention_heads_per_partition,
|
||||
|
|
|
|||
|
|
@ -38,24 +38,7 @@ import math
|
|||
import torch.nn.functional as F
|
||||
from bigdl.llm.utils.common import invalidInputError
|
||||
from bigdl.llm.transformers.models.utils import create_kv_cache, append_kv_cache
|
||||
|
||||
|
||||
def rotate_half(x):
|
||||
"""Rotates half the hidden dims of the input."""
|
||||
x1 = x[..., :x.shape[-1] // 2]
|
||||
x2 = x[..., x.shape[-1] // 2:]
|
||||
return torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
|
||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
||||
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
||||
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||
return q_embed, k_embed
|
||||
from bigdl.llm.transformers.models.utils import rotate_half, apply_rotary_pos_emb
|
||||
|
||||
|
||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||
|
|
@ -122,15 +105,13 @@ def llama_attention_forward_4_31(
|
|||
kv_seq_len += past_key_value[0].shape[-2]
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||
cos, sin, position_ids)
|
||||
cos, sin, position_ids, "llama")
|
||||
|
||||
if past_key_value is not None:
|
||||
# reuse k, v, self_attention
|
||||
cache_k = past_key_value[0]
|
||||
cache_v = past_key_value[1]
|
||||
if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
|
||||
if device.type == 'xpu':
|
||||
torch.xpu.empty_cache()
|
||||
# allocate new
|
||||
new_cache_k, new_cache_v = create_kv_cache(bsz,
|
||||
self.num_key_value_heads, # Support GQA
|
||||
|
|
|
|||
|
|
@ -15,9 +15,12 @@
|
|||
#
|
||||
|
||||
import torch
|
||||
from bigdl.llm.utils.common import invalidInputError
|
||||
|
||||
|
||||
def create_kv_cache(batch_size, num_heads, head_dim, current_length, max_length, dtype, device):
|
||||
if device.type == 'xpu':
|
||||
torch.xpu.empty_cache()
|
||||
key_cache_storage = torch.empty(batch_size, num_heads,
|
||||
max_length, head_dim,
|
||||
dtype=dtype, device=device)
|
||||
|
|
@ -46,3 +49,25 @@ def append_kv_cache(cache_k, cache_v, key_states, value_states):
|
|||
new_cache_v = cache_v.as_strided(new_size, cache_v.stride(), storage_offset=0)
|
||||
new_cache_v[:, :, cache_v.size(2):cache_k.size(2) + key_states.size(2), :] = value_states
|
||||
return new_cache_k, new_cache_v
|
||||
|
||||
|
||||
def rotate_half(x):
|
||||
"""Rotates half the hidden dims of the input."""
|
||||
x1 = x[..., :x.shape[-1] // 2]
|
||||
x2 = x[..., x.shape[-1] // 2:]
|
||||
return torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
|
||||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
|
||||
if model_family in ["llama", "baichuan"]:
|
||||
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
||||
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||
return q_embed, k_embed
|
||||
else:
|
||||
invalidInputError(False,
|
||||
f"{model_family} is not supported.")
|
||||
|
|
|
|||
Loading…
Reference in a new issue