[LLM] Add support for low_low_bit benchmark on Windows GPU (#10167)
				
					
				
			* Add support for low_low_bit performance test on Windows GPU * Small fix * Small fix * Save memory during converting model process * Drop the results for first time when loading in low bit on mtl igpu for better performance * Small fix
This commit is contained in:
		
							parent
							
								
									276ef0e885
								
							
						
					
					
						commit
						001c13243e
					
				
					 4 changed files with 188 additions and 5 deletions
				
			
		| 
						 | 
				
			
			@ -43,13 +43,21 @@ test_api:
 | 
			
		|||
  - "pytorch_autocast_bf16"
 | 
			
		||||
  # - "transformer_autocast_bf16"
 | 
			
		||||
  # - "ipex_fp16_gpu" # on Intel GPU
 | 
			
		||||
  # - "bigdl_fp16_gpu" # on Intel GPU
 | 
			
		||||
  # - "transformer_int4_gpu"  # on Intel GPU
 | 
			
		||||
  # - "optimize_model_gpu"  # on Intel GPU
 | 
			
		||||
  # - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
 | 
			
		||||
  # - "transformer_int4_gpu_win" # on Intel GPU for Windows (catch GPU peak memory)
 | 
			
		||||
  # - "transformer_int4_gpu_win" # on Intel GPU for Windows
 | 
			
		||||
  # - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows using load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
 | 
			
		||||
cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu win related test_api)
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## (Optional) Save model in low bit
 | 
			
		||||
If you choose the `transformer_int4_loadlowbit_gpu_win` test API, you will need to save the model in low bit first.
 | 
			
		||||
 | 
			
		||||
Run `python save.py` will save all models declared in `repo_id` list into low bit models under `local_model_hub` folder.
 | 
			
		||||
 | 
			
		||||
## Run
 | 
			
		||||
 | 
			
		||||
run `python run.py`, this will output results to `results.csv`.
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -23,5 +23,6 @@ test_api:
 | 
			
		|||
  # - "transformer_int4_gpu"  # on Intel GPU
 | 
			
		||||
  # - "optimize_model_gpu"  # on Intel GPU
 | 
			
		||||
  # - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
 | 
			
		||||
  # - "transformer_int4_gpu_win" # on Intel GPU for Windows (catch GPU peak memory)
 | 
			
		||||
  # - "transformer_int4_gpu_win" # on Intel GPU for Windows
 | 
			
		||||
  # - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows using load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
 | 
			
		||||
cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu win related test_api)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -86,6 +86,10 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
 | 
			
		|||
        result = run_deepspeed_transformer_int4_cpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size)
 | 
			
		||||
    elif test_api == 'transformer_int4_gpu_win':
 | 
			
		||||
        result = run_transformer_int4_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size)
 | 
			
		||||
    elif test_api == 'transformer_int4_loadlowbit_gpu_win':
 | 
			
		||||
        # drop the results of the first time for better performance
 | 
			
		||||
        run_transformer_int4_loadlowbit_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size)
 | 
			
		||||
        result = run_transformer_int4_loadlowbit_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size)
 | 
			
		||||
    elif test_api == 'transformer_autocast_bf16':
 | 
			
		||||
        result = run_transformer_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -102,7 +106,7 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
 | 
			
		|||
                            num_beams,
 | 
			
		||||
                            low_bit,
 | 
			
		||||
                            cpu_embedding if 'win' in test_api else 'N/A',
 | 
			
		||||
                            result[in_out_pair][-1][5] if 'int4_gpu' in test_api else 'N/A']) # currently only peak mem for transformer_int4_gpu is caught here
 | 
			
		||||
                            result[in_out_pair][-1][5] if 'int4_gpu' in test_api or 'int4_loadlowbit_gpu' in test_api else 'N/A']) # currently only peak mem for transformer_int4_gpu is caught here
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def get_model_path(repo_id, local_model_hub):
 | 
			
		||||
| 
						 | 
				
			
			@ -800,8 +804,8 @@ def run_transformer_int4_gpu_win(repo_id,
 | 
			
		|||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
        model = model.to('xpu')
 | 
			
		||||
    elif repo_id in LLAMA_IDS:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
 | 
			
		||||
                                                     use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
 | 
			
		||||
                                                     trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
			
		||||
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
        model = model.to('xpu')
 | 
			
		||||
    elif repo_id in LLAVA_IDS:
 | 
			
		||||
| 
						 | 
				
			
			@ -873,6 +877,102 @@ def run_transformer_int4_gpu_win(repo_id,
 | 
			
		|||
    gc.collect()
 | 
			
		||||
    return result
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def run_transformer_int4_loadlowbit_gpu_win(repo_id,
 | 
			
		||||
                                            local_model_hub,
 | 
			
		||||
                                            in_out_pairs,
 | 
			
		||||
                                            warm_up,
 | 
			
		||||
                                            num_trials,
 | 
			
		||||
                                            num_beams,
 | 
			
		||||
                                            low_bit,
 | 
			
		||||
                                            cpu_embedding,
 | 
			
		||||
                                            batch_size):
 | 
			
		||||
    from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
 | 
			
		||||
    from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
 | 
			
		||||
    import intel_extension_for_pytorch as ipex
 | 
			
		||||
    model_path = get_model_path(repo_id, local_model_hub)
 | 
			
		||||
    # Load BigDL-LLM optimized low bit model
 | 
			
		||||
    st = time.perf_counter()
 | 
			
		||||
    if repo_id in CHATGLM_IDS:
 | 
			
		||||
        model = AutoModel.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
 | 
			
		||||
                                       use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
 | 
			
		||||
        model = model.to('xpu')
 | 
			
		||||
    elif repo_id in LLAMA_IDS:
 | 
			
		||||
        model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
 | 
			
		||||
                                                  use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
			
		||||
        tokenizer = LlamaTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
 | 
			
		||||
        model = model.to('xpu')
 | 
			
		||||
    elif repo_id in LLAVA_IDS:
 | 
			
		||||
        llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
 | 
			
		||||
        sys.path.append(rf"{llava_repo_dir}")
 | 
			
		||||
        from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
 | 
			
		||||
        model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
 | 
			
		||||
                                                  use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
 | 
			
		||||
        model = model.to('xpu')
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
 | 
			
		||||
                                                  use_cache=True, cpu_embedding=cpu_embedding).eval()
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
 | 
			
		||||
        model = model.to('xpu')
 | 
			
		||||
        if isinstance(model, GPTJForCausalLM):
 | 
			
		||||
            # For gpt-j model family, this optimization can provide a better performance.
 | 
			
		||||
            model = ipex.optimize(model.eval(), inplace=True)
 | 
			
		||||
    end = time.perf_counter()
 | 
			
		||||
    print(">> loading of model costs {}s and {}GB".format(end - st, torch.xpu.memory.memory_reserved()/(1024**3)))
 | 
			
		||||
 | 
			
		||||
    model = BenchmarkWrapper(model)
 | 
			
		||||
 | 
			
		||||
    result = {}
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        for in_out in in_out_pairs:
 | 
			
		||||
            try:
 | 
			
		||||
                in_out_len = in_out.split("-")
 | 
			
		||||
                in_len = int(in_out_len[0])
 | 
			
		||||
                out_len = int(in_out_len[1])
 | 
			
		||||
                # As different tokenizer has different encodings,
 | 
			
		||||
                # in_len.txt maybe shorter than we need,
 | 
			
		||||
                # use much longer context to make sure input length
 | 
			
		||||
                test_length = min(in_len*2, 8192)
 | 
			
		||||
                while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
			
		||||
                    test_length = test_length * 2
 | 
			
		||||
                input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
			
		||||
                # As different tokenizer has different encodings,
 | 
			
		||||
                # slice the input_ids to ensure the prompt length is required length.
 | 
			
		||||
                input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
			
		||||
                input_ids = input_ids[:, :in_len]
 | 
			
		||||
                true_str = tokenizer.batch_decode(input_ids)[0]
 | 
			
		||||
                input_list = [true_str] * batch_size
 | 
			
		||||
                input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
 | 
			
		||||
                actual_in_len = input_ids.shape[1]
 | 
			
		||||
                result[in_out] = []
 | 
			
		||||
                for i in range(num_trials + warm_up):
 | 
			
		||||
                    st = time.perf_counter()
 | 
			
		||||
                    output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
			
		||||
                                                num_beams=num_beams)
 | 
			
		||||
                    torch.xpu.synchronize()
 | 
			
		||||
                    end = time.perf_counter()
 | 
			
		||||
                    output_ids = output_ids.cpu()
 | 
			
		||||
                    print("model generate cost: " + str(end - st))
 | 
			
		||||
                    output = tokenizer.batch_decode(output_ids)
 | 
			
		||||
                    print(output[0])
 | 
			
		||||
                    actual_out_len = output_ids.shape[1] - actual_in_len
 | 
			
		||||
                    if i >= warm_up:
 | 
			
		||||
                        result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
			
		||||
                                               actual_in_len, actual_out_len, model.peak_memory])
 | 
			
		||||
                    # torch.xpu.empty_cache() # this may make first token slower
 | 
			
		||||
            except RuntimeError:
 | 
			
		||||
                traceback.print_exc()
 | 
			
		||||
                pass
 | 
			
		||||
    model.to('cpu')
 | 
			
		||||
    torch.xpu.synchronize()
 | 
			
		||||
    torch.xpu.empty_cache()
 | 
			
		||||
    del model
 | 
			
		||||
    gc.collect()
 | 
			
		||||
    return result
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def run_transformer_autocast_bf16( repo_id,
 | 
			
		||||
                    local_model_hub,
 | 
			
		||||
                    in_out_pairs,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										74
									
								
								python/llm/dev/benchmark/all-in-one/save.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										74
									
								
								python/llm/dev/benchmark/all-in-one/save.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,74 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
# this code is to support converting of model in load bit
 | 
			
		||||
# for performance tests using load_low_bit
 | 
			
		||||
 | 
			
		||||
import omegaconf
 | 
			
		||||
import time
 | 
			
		||||
import os
 | 
			
		||||
import sys
 | 
			
		||||
import gc
 | 
			
		||||
 | 
			
		||||
from run import LLAMA_IDS, CHATGLM_IDS, LLAVA_IDS, get_model_path
 | 
			
		||||
 | 
			
		||||
current_dir = os.path.dirname(os.path.realpath(__file__))
 | 
			
		||||
 | 
			
		||||
def save_model_in_low_bit(repo_id,
 | 
			
		||||
                          local_model_hub,
 | 
			
		||||
                          low_bit):
 | 
			
		||||
    from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
 | 
			
		||||
    from transformers import AutoTokenizer, LlamaTokenizer
 | 
			
		||||
    model_path = get_model_path(repo_id, local_model_hub)
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    st = time.perf_counter()
 | 
			
		||||
    if repo_id in CHATGLM_IDS:
 | 
			
		||||
        model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
 | 
			
		||||
                                          trust_remote_code=True, use_cache=True).eval()
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    elif repo_id in LLAMA_IDS:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
 | 
			
		||||
                                                     use_cache=True).eval()
 | 
			
		||||
        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    elif repo_id in LLAVA_IDS:
 | 
			
		||||
        llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
 | 
			
		||||
        sys.path.append(rf"{llava_repo_dir}")
 | 
			
		||||
        from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
 | 
			
		||||
                                          trust_remote_code=True, use_cache=True).eval()
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
 | 
			
		||||
                                                     trust_remote_code=True, use_cache=True).eval()
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    end = time.perf_counter()
 | 
			
		||||
    print(">> loading of and converting of model costs {}s".format(end - st))
 | 
			
		||||
 | 
			
		||||
    model.save_low_bit(model_path+'-'+low_bit)
 | 
			
		||||
    tokenizer.save_pretrained(model_path+'-'+low_bit)
 | 
			
		||||
 | 
			
		||||
    del model
 | 
			
		||||
    gc.collect()
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    from omegaconf import OmegaConf
 | 
			
		||||
    conf = OmegaConf.load(f'{current_dir}/config.yaml')
 | 
			
		||||
 | 
			
		||||
    for model in conf.repo_id:
 | 
			
		||||
        save_model_in_low_bit(repo_id=model,
 | 
			
		||||
                              local_model_hub=conf['local_model_hub'],
 | 
			
		||||
                              low_bit=conf['low_bit'])
 | 
			
		||||
		Loading…
	
		Reference in a new issue