[LLM] Add support for low_low_bit benchmark on Windows GPU (#10167)

* Add support for low_low_bit performance test on Windows GPU

* Small fix

* Small fix

* Save memory during converting model process

* Drop the results for first time when loading in low bit on mtl igpu for better performance

* Small fix
This commit is contained in:
Yuwen Hu 2024-02-21 10:51:52 +08:00 committed by GitHub
parent 276ef0e885
commit 001c13243e
4 changed files with 188 additions and 5 deletions

View file

@ -43,13 +43,21 @@ test_api:
- "pytorch_autocast_bf16" - "pytorch_autocast_bf16"
# - "transformer_autocast_bf16" # - "transformer_autocast_bf16"
# - "ipex_fp16_gpu" # on Intel GPU # - "ipex_fp16_gpu" # on Intel GPU
# - "bigdl_fp16_gpu" # on Intel GPU
# - "transformer_int4_gpu" # on Intel GPU # - "transformer_int4_gpu" # on Intel GPU
# - "optimize_model_gpu" # on Intel GPU # - "optimize_model_gpu" # on Intel GPU
# - "deepspeed_transformer_int4_cpu" # on Intel SPR Server # - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
# - "transformer_int4_gpu_win" # on Intel GPU for Windows (catch GPU peak memory) # - "transformer_int4_gpu_win" # on Intel GPU for Windows
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows using load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu win related test_api) cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu win related test_api)
``` ```
## (Optional) Save model in low bit
If you choose the `transformer_int4_loadlowbit_gpu_win` test API, you will need to save the model in low bit first.
Run `python save.py` will save all models declared in `repo_id` list into low bit models under `local_model_hub` folder.
## Run ## Run
run `python run.py`, this will output results to `results.csv`. run `python run.py`, this will output results to `results.csv`.

View file

@ -23,5 +23,6 @@ test_api:
# - "transformer_int4_gpu" # on Intel GPU # - "transformer_int4_gpu" # on Intel GPU
# - "optimize_model_gpu" # on Intel GPU # - "optimize_model_gpu" # on Intel GPU
# - "deepspeed_transformer_int4_cpu" # on Intel SPR Server # - "deepspeed_transformer_int4_cpu" # on Intel SPR Server
# - "transformer_int4_gpu_win" # on Intel GPU for Windows (catch GPU peak memory) # - "transformer_int4_gpu_win" # on Intel GPU for Windows
# - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows using load_low_bit API. Please make sure you have used the save.py to save the converted low bit model
cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu win related test_api) cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu win related test_api)

View file

@ -86,6 +86,10 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
result = run_deepspeed_transformer_int4_cpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size) result = run_deepspeed_transformer_int4_cpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size)
elif test_api == 'transformer_int4_gpu_win': elif test_api == 'transformer_int4_gpu_win':
result = run_transformer_int4_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size) result = run_transformer_int4_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size)
elif test_api == 'transformer_int4_loadlowbit_gpu_win':
# drop the results of the first time for better performance
run_transformer_int4_loadlowbit_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size)
result = run_transformer_int4_loadlowbit_gpu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, cpu_embedding, batch_size)
elif test_api == 'transformer_autocast_bf16': elif test_api == 'transformer_autocast_bf16':
result = run_transformer_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size) result = run_transformer_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
@ -102,7 +106,7 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
num_beams, num_beams,
low_bit, low_bit,
cpu_embedding if 'win' in test_api else 'N/A', cpu_embedding if 'win' in test_api else 'N/A',
result[in_out_pair][-1][5] if 'int4_gpu' in test_api else 'N/A']) # currently only peak mem for transformer_int4_gpu is caught here result[in_out_pair][-1][5] if 'int4_gpu' in test_api or 'int4_loadlowbit_gpu' in test_api else 'N/A']) # currently only peak mem for transformer_int4_gpu is caught here
def get_model_path(repo_id, local_model_hub): def get_model_path(repo_id, local_model_hub):
@ -800,8 +804,8 @@ def run_transformer_int4_gpu_win(repo_id,
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to('xpu') model = model.to('xpu')
elif repo_id in LLAMA_IDS: elif repo_id in LLAMA_IDS:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
use_cache=True, cpu_embedding=cpu_embedding).eval() trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True) tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to('xpu') model = model.to('xpu')
elif repo_id in LLAVA_IDS: elif repo_id in LLAVA_IDS:
@ -873,6 +877,102 @@ def run_transformer_int4_gpu_win(repo_id,
gc.collect() gc.collect()
return result return result
def run_transformer_int4_loadlowbit_gpu_win(repo_id,
local_model_hub,
in_out_pairs,
warm_up,
num_trials,
num_beams,
low_bit,
cpu_embedding,
batch_size):
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
import intel_extension_for_pytorch as ipex
model_path = get_model_path(repo_id, local_model_hub)
# Load BigDL-LLM optimized low bit model
st = time.perf_counter()
if repo_id in CHATGLM_IDS:
model = AutoModel.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
use_cache=True, cpu_embedding=cpu_embedding).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
model = model.to('xpu')
elif repo_id in LLAMA_IDS:
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
use_cache=True, cpu_embedding=cpu_embedding).eval()
tokenizer = LlamaTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
model = model.to('xpu')
elif repo_id in LLAVA_IDS:
llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
sys.path.append(rf"{llava_repo_dir}")
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
use_cache=True, cpu_embedding=cpu_embedding).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
model = model.to('xpu')
else:
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
use_cache=True, cpu_embedding=cpu_embedding).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
model = model.to('xpu')
if isinstance(model, GPTJForCausalLM):
# For gpt-j model family, this optimization can provide a better performance.
model = ipex.optimize(model.eval(), inplace=True)
end = time.perf_counter()
print(">> loading of model costs {}s and {}GB".format(end - st, torch.xpu.memory.memory_reserved()/(1024**3)))
model = BenchmarkWrapper(model)
result = {}
with torch.inference_mode():
for in_out in in_out_pairs:
try:
in_out_len = in_out.split("-")
in_len = int(in_out_len[0])
out_len = int(in_out_len[1])
# As different tokenizer has different encodings,
# in_len.txt maybe shorter than we need,
# use much longer context to make sure input length
test_length = min(in_len*2, 8192)
while test_length not in [32, 256, 1024, 2048, 8192]:
test_length = test_length * 2
input_str = open(f"prompt/{test_length}.txt", 'r').read()
# As different tokenizer has different encodings,
# slice the input_ids to ensure the prompt length is required length.
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_list = [true_str] * batch_size
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
actual_in_len = input_ids.shape[1]
result[in_out] = []
for i in range(num_trials + warm_up):
st = time.perf_counter()
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
num_beams=num_beams)
torch.xpu.synchronize()
end = time.perf_counter()
output_ids = output_ids.cpu()
print("model generate cost: " + str(end - st))
output = tokenizer.batch_decode(output_ids)
print(output[0])
actual_out_len = output_ids.shape[1] - actual_in_len
if i >= warm_up:
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
actual_in_len, actual_out_len, model.peak_memory])
# torch.xpu.empty_cache() # this may make first token slower
except RuntimeError:
traceback.print_exc()
pass
model.to('cpu')
torch.xpu.synchronize()
torch.xpu.empty_cache()
del model
gc.collect()
return result
def run_transformer_autocast_bf16( repo_id, def run_transformer_autocast_bf16( repo_id,
local_model_hub, local_model_hub,
in_out_pairs, in_out_pairs,

View file

@ -0,0 +1,74 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# this code is to support converting of model in load bit
# for performance tests using load_low_bit
import omegaconf
import time
import os
import sys
import gc
from run import LLAMA_IDS, CHATGLM_IDS, LLAVA_IDS, get_model_path
current_dir = os.path.dirname(os.path.realpath(__file__))
def save_model_in_low_bit(repo_id,
local_model_hub,
low_bit):
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer, LlamaTokenizer
model_path = get_model_path(repo_id, local_model_hub)
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
st = time.perf_counter()
if repo_id in CHATGLM_IDS:
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
trust_remote_code=True, use_cache=True).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
elif repo_id in LLAMA_IDS:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
use_cache=True).eval()
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
elif repo_id in LLAVA_IDS:
llava_repo_dir = os.environ.get('LLAVA_REPO_DIR')
sys.path.append(rf"{llava_repo_dir}")
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
trust_remote_code=True, use_cache=True).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
trust_remote_code=True, use_cache=True).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
end = time.perf_counter()
print(">> loading of and converting of model costs {}s".format(end - st))
model.save_low_bit(model_path+'-'+low_bit)
tokenizer.save_pretrained(model_path+'-'+low_bit)
del model
gc.collect()
if __name__ == '__main__':
from omegaconf import OmegaConf
conf = OmegaConf.load(f'{current_dir}/config.yaml')
for model in conf.repo_id:
save_model_in_low_bit(repo_id=model,
local_model_hub=conf['local_model_hub'],
low_bit=conf['low_bit'])