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This report presents VIBEVOICE, a novel model designed to synthesize long-form speech
with multiple speakers by employing the next-token diffusion framework [SBW+24]—a
unified method for modeling continuous data by autoregressively generating latent vectors
via diffusion. To enable this, we introduce a novel continuous speech tokenizer that, when
compared to the popular Encodec model, improves data compression by 80 times while
maintaining comparable performance. This tokenizer effectively preserves audio fidelity
while significantly boosting computational efficiency for processing long sequences. Thus,
VIBEVOICE can synthesize long-form speech for up to 90 minutes (in a 64K context
window length) with a maximum of 4 speakers, capturing the authentic conversational
"vibe" and surpassing open-source and proprietary dialogue models.
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Demo: aka.ms/VibeVoice-Demo
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Figure 1: VIBEVOICE is capable of synthesizing 5,000+ seconds of audio while consistently out-
performing strong open/closed-source systems in subjective evaluations of preference, realism, and
richness.
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VibeVoice

User Input: Voice & Text Scripts
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Figure 2: VIBEVOICE employs next token diffusion framework as in LatentLM [SBW+24] to
synthesize long-form and multi-speaker audios. Voice prompts and text scripts provide initial input.
VIBEVOICE processes hybrid context features, and its hidden states condition a token level Diffusion
Head (D), which predicts acoustic VAE for speech segments, subsequently recovered by acoustic
decoder (A).

1 Introduction

While recent advancements in Text-to-Speech (TTS) synthesis have achieved remarkable suc-
cess in generating high-fidelity, natural-sounding speech for single speakers in short utter-
ances [WCW+23, SJT+23, ACC+24a, LVS+23, CNM+24, DWC+24a, JCC+25, YZC+25], a sig-
nificant frontier remains in the scalable synthesis of long-form, multi-speaker conversational audio,
such as podcasts and multi-participant audiobooks. Although traditional systems can technically
produce such audio by concatenating individually synthesized utterances, achieving natural turn-
taking and content-aware generation are major challenges. Recently, research on multi-speaker
long conversational speech generation has begun to emerge [Goo24, PSJ+24, Nar25, Ope25, Ses25?
, LWI+24]. However, most of these works are either not open-sourced [Goo24, PSJ+24] or still face
challenges in terms of generation length and stability [ZQW+25, Ses25, JYY+25, Ope25].

In this work, we introduce VIBEVOICE, as illustrated in Figure 2, a novel framework developed for
the scalable synthesis of long-form and multi-speaker speech. To support long audio generation, we
have pioneered the development of a causal speech tokenizer that achieves a 3200× compression
rate (i.e., 7.5 Hz frame rate). In our experiments, this highly efficient tokenizer maintains a speech-
to-text token ratio of approximately 2:1, meaning two speech tokens are roughly equivalent to one
BPE [SHB15] text token.

We utilize a pre-trained Large Language Model (LLM, e.g., Qwen2.5 [YYZ+24]) to interpret complex
user inputs, including detailed text sentences and role assignments. We have streamlined the architec-
ture by removing unnecessary prior designs: voice latent features and text scripts are concatenated
into a single sequence and fed directly into the LLM. The LLM then processes this context to predict
a hidden state, which in turn conditions a lightweight, token-level Diffusion Head [LTL+24]. This
diffusion head is responsible for predicting the continuous Variational Autoencoder (VAE) features,
which are subsequently recovered into the final audio output by speech tokenizer decoder.

Despite its architectural simplicity, VIBEVOICE yields an exceptionally powerful TTS model. It
demonstrates remarkable flexibility in handling multiple speakers and achieves a synthesis length
of up to 90 minutes. Scaling the LLM from 1.5B to 7B, the larger model exhibits significant
gains in perceptual quality, delivering richer timbre, more natural intonation, and enhanced transfer
capabilities, such as in cross-lingual applications.
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2 Method

2.1 Speech Tokenizers

We employ two separate tokenizers as input to learn both acoustic and semantic features. In our
experiments, generating long-form speech benefits from this separate design.

Acoustic Tokenizer adopts the principles of a Variational Autoencoder (VAE) [KW14], specifically
drawing inspiration from the σ-VAE variant proposed in LatentLM [SBW+24] to mitigate potential
variance collapse issues of VAEs when used in autoregressive modeling settings. The process involves
an encoder network, parameterized by ϕ, which maps the input audio x to the parameters of a latent
distribution, primarily the mean µ. Notably, variance σ is a pre-defined distribution (N (0, Cσ)) in σ-
VAE, rather than a learnable distribution in VAE [KW14]. A latent vector z is then sampled using the
reparameterization trick. Following the σ-VAE approach to ensure robust variance for autoregressive
modeling, we can formulate this as: z = µ+ σ ⊙ ϵ,where ϵ ∼ N (0, 1), σ ∼ N (0, Cσ).

The architecture is a mirror-symmetric encoder-decoder structure. The encoder employs a hierarchical
design with 7 stages of modified Transformer blocks [VSP+17] (using 1D depth-wise causal convo-
lutions instead of self-attention module) for efficient streaming processing. Six downsampling layers
achieve a cumulative 3200X downsampling rate from a 24kHz input, yielding 7.5 tokens/frames
per second. Each encoder/decoder component has approximately 340M parameters. The training
objective follows the DAC [KSL+23], including its discriminator and loss designs.

Semantic Tokenizer mirrors the hierarchical architecture of the Acoustic Tokenizer’s encoder, but
without VAE components, as its objective is deterministic content-centric feature extraction. The
main difference is the training objective, which uses Automatic Speech Recognition (ASR) as the
proxy task. During training, its output is decoded by several Transformer decoder layers to predict
text transcripts, aligning the semantic encoder’s representations with textual semantics. This decoder
is discarded after pre-training.

2.2 VIBEVOICE

VIBEVOICE employs a Large Language Model (LLM) as its core sequence model, integrated with
specialized audio encoding and diffusion-based decoding modules to achieve scalable, high-fidelity
multi-speaker speech synthesis. The overall inference architecture is depicted in Figure 2.

Input Representation: The model input X is formed by concatenating the voice font features
and the text script embeddings, specified by users, interleaved with role identifiers (Speakerk):
X = [Speaker1 : z1, Speaker2 : z2, ..., SpeakerN : zN ] + [Speaker1 : T1, Speaker2 :
T2, ..., SpeakerN : TN ], where zN is acoustic latent representations and TN is each role’s text
scripts. For the generated speech segment s, it will be encoded by acoustic tokenizer and semantic
tokenizer to form the hybrid speech representation for the auto-regressive modeling.

Token-Level Diffusion: To synthesize speech in a streaming way, VIBEVOICE employs a lightweight
diffusion head [LTL+24] conditioned on the LLM’s hidden state of each token, hi. During training,
this diffusion head is optimized to reverse a forward noising process by predicting the noise [HJA20]
added to the clean acoustic VAE features za,i. During inference, this diffusion head iteratively refines
a randomly sampled Gaussian noise vector to predict the target acoustic VAE feature, za,i. This
denoising process is enhanced using Classifier-Free Guidance (CFG), which interpolates between a
conditional prediction (guided by hi) and an unconditional prediction. An efficient sampler, such
as DPM-Solver++ [LZB+22, LZB+25], is utilized to accelerate this iterative process, ultimately
yielding a clean acoustic feature estimate.

We instantiated VIBEVOICE’s core LLM using the 1.5B and 7B parameter versions of Qwen2.5
[YYZ+24]. The diffusion head [LTL+24] comprises 4 layers. During VIBEVOICE training, the
pre-trained acoustic and semantic tokenizers remained frozen, with only the LLM and diffusion head
parameters being learnable. We employed a curriculum learning strategy for the LLM input sequence
length, progressively increasing from 4,096 to 65,536 tokens. The guidance scale is 1.3 and the
iterative denoising step is 10 for VIBEVOICE.
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Model Subjective Objective
Realism Richness Preference Average WER (Whisper) WER (Nemo) SIM

Nari Labs Dia [Nar25] - - - - 11.96 10.79 0.541
Mooncast [JYY+25] - - - - 2.81 3.29 0.562
SesameAILabs-CSM [Ses25] 2.89 ±1.15 3.03 ±1.11 2.75 ±1.08 2.89 ±1.12 2.66 3.05 0.685
Higgs Audio V2 [Bos25] 2.95 ±1.13 3.19 ±1.06 2.83 ±1.16 2.99 ±1.13 5.94 5.97 0.543
Elevenlabs v3 alpha [Ele] 3.34 ±1.11 3.48 ±1.05 3.38 ±1.12 3.40 ±1.09 2.39 2.47 0.623
Gemini 2.5 pro preview tts [Goo] 3.55 ±1.20 3.78 ±1.11 3.65 ±1.15 3.66 ±1.16 1.73 2.43 -

VIBEVOICE-1.5B 3.59 ±0.95 3.59 ±1.01 3.44 ±0.92 3.54 ±0.96 1.11 1.82 0.548
VIBEVOICE-7B 3.71 ±0.98 3.81 ±0.87 3.75 ±0.94 3.76 ±0.93 1.29 1.95 0.692

Table 1: Human subjective and objective evaluation results. For all subjective metrics and SIM-O,
higher scores are better. For WER, lower scores are better. Best results are in bold.

3 Results

3.1 VIBEVOICE Podcast

We conducted both objective and subjective evaluations to benchmark the performance of the
proposed VIBEVOICE against recent state-of-the-art conversational speech generation systems [Nar25,
JYY+25, Ses25, Bos25, Ele, Goo].

To manage the labor-intensive and time-consuming nature of subjective evaluation, we designed a
compact test set. This set consists of 8 long conversational transcripts with a total duration of about 1
hour. We used speech prompts to ensure consistent timbre across the different models. Since Gemini
2.5 Pro preview TTS does not support speech-prompt control, we used its default male and female
voices for comparison instead.

For our objective evaluation, we measure Word Error Rate (WER) and speaker similarity. WER
is obtained by transcribing the generated speech using Whisper-large-v3 [RKX+23] and Nemo
ASR [XJM+23]. Speaker similarity (SIM) is computed by extracting speaker embeddings with
WavLM-large [CWC+22].

For subjective evaluation, we recruited 24 human annotators to provide Mean Opinion Scores (MOS)
across three dimensions: Realism (how natural and human-like the speech sounds, including prosody,
emotion, and the smoothness of speaker turns), Richness (the expressiveness of the speech in terms
of tone and emotion, including variation and adaptation to context), and Preference (overall listener
enjoyment and subjective preference, reflecting naturalness, pleasantness, and engagement). The
evaluation covered six models with all eight test samples, meaning that each annotator listened to
approximately six hours of audio in total.

We can observe that: The proposed VIBEVOICE models outperform all other top-tier models
on long conversational speech generation across both objective and subjective metrics. Com-
pared with the VIBEVOICE-1.5B model, the VIBEVOICE-7B model achieves significantly better
performance on all objective metrics and SIM, while maintaining a comparable WER.

3.2 VIBEVOICE Short Utterance

We evaluate VIBEVOICE on the SEED test sets [ACC+24b], a widely used benchmark composed of
short utterances. For evaluation, approximately 1,000 English samples and 2,000 Chinese samples
are drawn from the CommonVoice dataset, denoted as test-en and test-zh, respectively. We compute
word error rate (WER) using Whisper-large-v3 for test-en and Paraformer [GZMY22] for test-zh. For
speaker similarity (SIM), we adopt a WavLM-large [CWC+22] model.

Table 2 presents the results on the SEED test sets. Although our model is primarily trained on
long-form speech, it demonstrates strong generalization on short-utterance benchmarks. In addition,
by employing a lower frame rate, our model substantially reduces the number of decoding steps
required to synthesize one second of speech.
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Model Frame Rate test-zh test-en
CER(%) ↓ SIM ↑ WER(%) ↓ SIM ↑

MaskGCT [WZL+24] 50 2.27 0.774 2.62 0.714
Seed-TTS [ACC+24b] - 1.12 0.796 2.25 0.762
FireRedTTS [GLS+24] 25 1.51 0.635 3.82 0.460
CosyVoice 2 [DWC+24b] 25 1.45 0.748 2.57 0.652
Spark TTS [WJM+25] 50 1.20 0.672 1.98 0.584

VIBEVOICE-1.5B 7.5 1.16 0.744 3.04 0.689

Table 2: Results on the SEED test sets.

Tokenizer Nq
Token test-clean test-other
Rate PESQ STOI UTMOS PESQ STOI UTMOS

Ground-Truth - - - - 4.056 - - 3.483
Encodec [DCSA22] 8 600 2.72 0.939 3.04 2.682 0.924 2.657
DAC [KSL+23] 4 400 2.738 0.928 3.433 2.595 0.908 2.945
Encodec [DCSA22] 4 300 2.052 0.901 2.307 2.052 0.884 2.088
SpeechTokenizer [ZZL+23] 4 300 1.931 0.878 3.563 1.737 0.837 3.018
DAC [KSL+23] 1 100 1.246 0.771 1.494 1.245 0.751 1.499
WavTokenizer [JJW+25] 1 75 2.373 0.914 4.049 2.261 0.891 3.431
WavTokenizer [JJW+25] 1 40 1.703 0.862 3.602 1.662 0.834 3.055

Ours (Acoustic) 1 7.5 3.068 0.828 4.181 2.848 0.823 3.724

Table 3: Objective evaluation of speech tokenizer’s reconstruction quality on the LibriTTS test-clean
and test-other datasets. Nq denotes the number of quantizers (VAE for us). Token Rate indicates the
number of tokens/frames generated per second of audio. Higher PESQ, STOI, and UTMOS scores
indicate better performance. Best results are in bold.

3.3 Tokenizer Reconstruction

The fidelity of audio reconstructed from acoustic tokens is a critical indicator of the tokenizer’s
efficacy in preserving essential acoustic information, particularly under high compression rates. To
quantify this, we measured PESQ [RBHH01], STOI [THHJ10] and UTMOS [SXN+22] on both the
LibriTTS test-clean and test-other datasets [ZDC+19]. Table 3 shows that our acoustic tokenizer,
uniquely operating at an ultra-low 7.5 Hz, achieves leading PESQ and UTMOS scores on both
test-clean (PESQ: 3.068, UTMOS: 4.181) and test-other (PESQ: 2.848, UTMOS: 3.724) subsets.
This demonstrates its capacity for high-fidelity, perceptually excellent audio reconstruction despite
aggressive compression, which is a key factor for VIBEVOICE’s scalability with long-form audio.

4 Conclusion, Limitations, and Risks

We introduced VIBEVOICE, a novel framework for long-form and multi-speaker speech generation.
By integrating efficient hybrid speech representations from specialized ultra-low frame rate (7.5 Hz)
acoustic and semantic tokenizers with an end-to-end LLM-based next-token diffusion framework,
VIBEVOICE achieves state-of-the-art performance. It scalably synthesizes high-quality audio for up
to 90 minutes with up to 4 speakers, demonstrably surpassing existing baselines in both subjective
perceptual quality—including preference, realism, and richness—and objective metrics like WER,
thereby significantly advancing the capabilities of conversational TTS.

English and Chinese only: Transcripts in languages other than English or Chinese may result in
unexpected audio outputs.

Non-Speech Audio: The model focuses solely on speech synthesis and does not handle background
noise, music, or other sound effects.

Overlapping Speech: The current model does not explicitly model or generate overlapping speech
segments in conversations.

Potential for Deepfakes and Disinformation: High-quality synthetic speech can be misused to
create convincing fake audio content for impersonation, fraud, or spreading disinformation. Users
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must ensure transcripts are reliable, check content accuracy, and avoid using generated content in
misleading ways.

We do not recommend using VIBEVOICE in commercial or real-world applications without further
testing and development. This model is intended for research and development purposes only. Please
use responsibly.
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